• Matéria: Matemática
  • Autor: beatrizmatieli
  • Perguntado 10 anos atrás

 Resolva a equação  :
Log₂X+Log₄X=4

Respostas

respondido por: Niiya
1
 \sqrt[n]{a^{x}}=a^{x/n}

log_{b}(a)+log_{b}(c)=log_{b}(a*c)
log_{(b^{n})}(a)=(1/n)*log_{b}(a)
log_{b}(a)=c <=> b^{c}=a
______________________

log_{2}(x)+log_{4}(x)=4
log_{2}(x)+log_{(2^{2})}(x)=4
log_{2}(x) + (1/2)*log_{2}(x)=4

Colocando log2(x) em evidência:

(1 + [1 / 2])*log_{2}(x)=4
(3/2)*log_{2}(x)=4
log_{2}(x)=4*2/3
log_{2}(x)=8/3
2^{8/3}=x
x =  \sqrt[3]{2^{8}}
x = \sqrt[3]{2^{6}}* \sqrt[3]{2^{2}}
x = 2^{6/3}* \sqrt[3]{4}
x = 2^{2}* \sqrt[3]{4}
x = 4 \sqrt[3]{4}

respondido por: Anônimo
0
\\\log_2x+\log_4x=4\\\\\log_2x+\frac{\log_2x}{\log_24}=4\\\\\log_2x+\frac{\log_2x}{\log_22^2}=4\\\\\log_2x+\frac{\log_2x}{2}=4\\\\2\cdot\log_2x+\log_2x=8\\\\3\cdot\log_2x=8\\\\\log_2x=\frac{8}{3}\\\\2^{\frac{8}{3}}=x\\\\\boxed{x=\sqrt[3]{2^8}}

 Ou, sob a forma apresentada pelo(a) Niiya. 
Perguntas similares