• Matéria: Matemática
  • Autor: edercarvalho00p5x032
  • Perguntado 7 anos atrás

A produção mensal de certa indústria, em toneladas, é representada pela expressão: f(x) = 100 – 100 . 4 – 0,05 x , onde x é o número de meses contados a partir de determinada data. Nesse contexto, a produção atingida após 10 meses será de:


mithie7552: Acho que a expressão não está certa. Favor conferir
edercarvalho00p5x032: a) 10 toneladas
b) 20 toneladas
c) 50 toneladas
d) 80 toneladas
e) 100 toneladas
nilidis: não está certa não, nem de longe passa por estes valores
mithie7552: Acho que o 4 é elevado a (-0,05x)
mithie7552: Sendo assim resposta é Letra C
mithie7552: f(x)=100-100.4^(-0,05x) → assim que precisa pedir

Respostas

respondido por: nilidis
3

Resposta:

Explicação passo-a-passo:

Olá, tudo bem? Vamos resolver esta questão?

f(x) = 100 – 100 . 4 – 0,05 x

Para x = 10 meses, temos:

f(x) = 100 – 100 . 4 – 0,05 .10

f(x) = 100 - 400 - 0,5

f(x) = -599,5

Sucesso nos estudos!!!


mithie7552: Atingiu produção negativa ?
nilidis: já viu isto?
edercarvalho00p5x032: estou doido com este questionário, nao consigo chegar nem uma alternativa da pergunta
nilidis: da onde que é este questionário?
respondido por: mithie7552
16

Resposta:

A produção atingida após 10 meses será de 50 toneladas

Explicação passo-a-passo:

Expressão colocada como deveria ser

f(x)=100-100.4^{-0,05x}\\ \\

como x é o número de meses contados

substituir x por 10

f(x)=100-100.4~^{-0,05.10}\\ \\ f(x)=100-100.4^{-0,5}\\ \\ calculando~~0,5={5\over10}={1\over2}\\ \\ f(x)=100-100.4^{-{1\over2}}\\ \\ f(x)=100-{100\over.4^{1\over2}}\\ \\ f(x)=100-{100\over\sqrt{4} }\\ \\ f(x)=100-{100\over2}\\ \\ f(x)=100-50\\ \\ f(x)=50

Perguntas similares