4. Em uma reta se encontram os quatro pontos consecutivos A, B, C e D com AB = AC-3, AB+CD= 4 que
satisfazem a seguinte relação: 3AB - BD - 2CD = 3. Determine o valor de AD.
Respostas
respondido por:
8
O valor de AD é 7.
Vamos supor que:
- O segmento AB é igual a x;
- O segmento BC é igual a y;
- O segmento CD é igual a z.
Então, devemos calcular a seguinte soma: AD = x + y + z.
De acordo com o enunciado, AB = AC - 3, ou seja:
x = x + y - 3
y = 3.
Além disso, temos que AB + CD = 4, ou seja: x + z = 4.
Note que BD = BC + CD. Como 3AB - BD - 2CD = 3, então:
3x - (y + z) - 2z = 3
3x - 3 - z - 2z = 3
3x - 3z = 6
x - z = 2.
Somando as equações x + z = 4 e x - z = 2, obtemos:
2x = 6
x = 3.
Consequentemente:
3 + z = 4
z = 1.
Portanto, podemos concluir que a medida do segmento AD é igual a:
AD = 3 + 3 +1
AD = 7.
Perguntas similares
5 anos atrás
5 anos atrás
8 anos atrás
8 anos atrás
9 anos atrás
9 anos atrás