Dados log2=0,3010, log3=0,4771 e log5=0,6990, determine:
a) Log 100
b) Log 200
c) Log 180
d) Log 240
Respostas
a) Log 100 = Log (5 x 5 x 2 x 2) = Log 5 + Log 5 + Log 2 + Log 2 =
0,699 + 0,699 + 0,301 + 0,301 = 2
b) Log 200 = Log (2 x 2 x 2 x 5 x 5) = 3 x Log 2 + 2 x Log 5=
3 x 0,301 + 2 x 0,699=
0,903 + 1,398 = 2,301
c) Log 180 = Log (2 x 2 x 5 x 3 x 3) = 2 x Log 2 + Log 5 + 2 x Log 3 =
2 x 0,301 + 0,699 + 2 x 0,4771 =
0,602 + 0,699 + 0,9542 = 2,2552
d) Log 240 = Log (2 x 2 x 2 x 2 x 5 x 3) = 4 x Log 2 + Log 5 + Log 3 =
4 x 0,301 + 0,699 + 0,4771 =
1,204 + 0,699 + 0,4771 = 2,3801