• Matéria: Matemática
  • Autor: Anônimo
  • Perguntado 7 anos atrás

Qual o valor da integral ?

\bf{\mathsf{\int \dfrac{{\tan}^{3}3x}{\sqrt{\sec(3x)}}dx}}

Respostas

respondido por: CyberKirito
0

\bf{\mathsf{\int \dfrac{{\tan}^{3}3x}{\sqrt{\sec(3x)}}dx}}

\bf{\mathsf{\int \dfrac{{\tan}^{2}3x.  \sec 3x \tan 3x }{ \sec 3x\sqrt{\sec(3x)}}dx}}

\bf{\mathsf{\int \dfrac{({\sec}^{2}3x - 1).  \sec 3x \tan 3x }{ \sec 3x\sqrt{\sec(3x)}}dx}}

u=\sec(3x) \rightarrow\,] \dfrac{1}{3}du=\sec(3x).\tan(3x)dx

\bf{\mathsf{ \frac{1}{3} \int \dfrac{({u}^{2} - 1)}{ u\sqrt{u}}du}} \\ \bf{\mathsf{ \frac{1}{3} \int ( {u}^{2}  - 1) {u}^{ -  \frac{3}{2} } }}du

\bf{\mathsf{ \frac{1}{3} \int ( {u}^{ \frac{1}{2} }  -  {u}^{ -  \frac{3}{2} } )}}du \\  =  \frac{1}{3}. \frac{2}{3} {u}^{ \frac{3}{2} }  -  \frac{1}{3}.( - 2) {u}^{ -  \frac{1}{2} }  + c \\  \frac{2}{9} { \sec }^{ \frac{3}{2} }3x +  \frac{2}{3}  { \sec}^{ -  \frac{1}{2} } \: 3x + c

 \boxed{ \boxed{\bf{\mathsf{\int \dfrac{{\tan}^{3}3x}{\sqrt{\sec(3x)}}dx}}}}\\ =  \boxed{ \boxed{\mathsf{\frac{2}{9} { \sec }^{ \frac{3}{2} }3x +  \frac{2}{3}  { \sec}^{ -  \frac{1}{2} } \: 3x + c}}}

Perguntas similares