• Matéria: Matemática
  • Autor: saudeandrade91
  • Perguntado 7 anos atrás

simplifique

a) (n+3)! -2(n+3)!
___________
(n+2)!-n!


b) 2(n+1)!+3(n-1)!
___________
(n+2)!

peço ajuda Pfv

Respostas

respondido por: garciarodrigo2001
2

Resposta:

A)

\frac{(n+3)!-2(n+3)!}{(n+2)!-n!}=\\

=\frac{(n+3)*(n+2)*(n+1)*n!-2*(n+3)*(n+2)*(n+1)*n!}{(n+2)*(n+1)*n!-n!} =

=\frac{n![(n+3)*(n+2)*(n+1)-2*(n+3)*(n+2)*(n+1)]}{n![(n+2)*(n+1)-1]}=

=\frac{(n+3)*(n+2)*(n+1)[1-2]}{n^2+n+2n+2-1}=

=\frac{-[(n+3)*(n+2)*(n+1)]}{n^2+3n+1} =

=\frac{-[(n+3)*(n^2+3n+2)]}{n^2+3n+1}=

=\frac{-(n^3+3n^2+2n+3n^2+9n+6)}{n^2+3n+1}=

=\frac{-n^3-6n^2-11n-6}{n^2+3n+1}

B)

\frac{2(n+1)!+3(n-1)!}{(n+2)!}=

=\frac{2*(n+1)!+3*(n+1)!}{(n+2)*(n+1)!}=

=\frac{2+3}{n+2}=

=\frac{5}{n+2}

Espero ter ajudado!!

Qualquer duvida, comente.


saudeandrade91: Pn+1-Pn/n!
garciarodrigo2001: O que?
Perguntas similares