• Matéria: Matemática
  • Autor: luanamaistrelo
  • Perguntado 7 anos atrás

Racionalize as expressões a seguir.

Anexos:

Respostas

respondido por: marcelo7197
5

Explicação passo-a-passo:

Racionalização do denominador :

Dada as expressões :

\mathsf{A)~\dfrac{\sqrt{5}}{6-\sqrt{2}} } \\

\mathsf{ A~=~ \dfrac{ \sqrt{5} }{6 - \sqrt{2}} \times \dfrac{ 6 + \sqrt{2} }{ 6 + \sqrt{2} } } \\

\mathsf{ A~=~\dfrac{ \sqrt{5} \Big( 6 + \sqrt{2} \Big) }{ \Big( 6 - \sqrt{2} \Big) \Big( 6 + \sqrt{2} \Big) } } \\

Note que :

(a - b)(a + b) = - , então vamos ter :

\mathsf{A~=~ \dfrac{ 6\sqrt{5} + \sqrt{5.2} }{ 6^2 - (\sqrt{2})^2} } \\

\mathsf{A~=~ \dfrac{ 6\sqrt{5} + \sqrt{10} }{36 - 2}~=~\red{ \dfrac{ 6\sqrt{5} + \sqrt{10} }{34} } } \\

_______________________________________________

\mathsf{B)~~ \dfrac{2}{5 - \sqrt{3}} } \\

\mathsf{ B~=~\dfrac{2}{ 5 - \sqrt{3} } \times \dfrac{ 5 + \sqrt{3}}{ 5 + \sqrt{3}} } \\

\mathsf{ B~=~ \dfrac{ 2\Big(5 + \sqrt{3} \Big)}{\Big( 5 - \sqrt{3} \Big) \Big( 5 + \sqrt{3} \Big) } } \\

 \mathsf{B~=~ \dfrac{10 + 2\sqrt{3}}{5^2 - (\sqrt{3})^2} ~=~\dfrac{ 10 + 2\sqrt{3} }{25 - 3 } } \\

 \mathsf{\blue{B~=~ \dfrac{10 + 2\sqrt{3} }{22} } }\\

________________________________________________

 \mathsf{ C)~~ \dfrac{4\sqrt{3}}{ \sqrt{5} + \sqrt{2}} } \\

 \mathsf{ C~=~ \dfrac{4\sqrt{3}}{ \sqrt{5} + \sqrt{2} } \times \dfrac{ \sqrt{5}-  \sqrt{2} }{ \sqrt{5} - \sqrt{2} } } \\

\mathsf{C~=~ \dfrac{ 4\sqrt{3 . 5 } + 4\sqrt{3 . 2} }{ (\sqrt{5} )^2 - (\sqrt{2})^2 }~=~ \dfrac{ 4( \sqrt{8} + \sqrt{6} ) }{ 5 - 2 } } \\

\mathsf{ \green{ B~=~ \dfrac{4( 2\sqrt{2} + \sqrt{6} )}{3} } } \\

______________________________________________

\mathsf{ D)~~ \dfrac{ 7}{ \sqrt{3} - \sqrt{2} } }\\

 \mathsf{ D~=~ \dfrac{7}{ \sqrt{3} - \sqrt{2} } \times \dfrac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} + \sqrt{2} } } \\

\mathsf{ D~=~ \dfrac{7( \sqrt{3} + \sqrt{2} )}{ (\sqrt{3} - \sqrt{2} )( \sqrt{3} + \sqrt{2} ) } } \\

 \mathsf{ D~=~ \dfrac{7( \sqrt{3} + \sqrt{2} )}{(\sqrt{3})^2 - (\sqrt{2})^2}~=~\dfrac{ 7( \sqrt{3} + \sqrt{2} )}{ 3 - 2 } } \\

\mathsf{ \red{ D~=~  7( \sqrt{3} + \sqrt{2} )  } } \\ ✅✅

Espero ter ajudado bastante!)

respondido por: Makaveli1996
3

Oie, Td Bom?!

a)

 \frac{  \sqrt{5} }{6 -  \sqrt{2} }

 \frac{ \sqrt{5} }{6 -  \sqrt{2} }  \times  \frac{6 +  \sqrt{2} }{6 +  \sqrt{2} }

 \frac{ \sqrt{5}  \times (6 +  \sqrt{2} )}{(6 -  \sqrt{2}) \times (6 +  \sqrt{2} ) }

 \frac{6 \sqrt{5} +  \sqrt{10}  }{36 - 2}

 \frac{6 \sqrt{5} +  \sqrt{10}  }{34}

b)

 \frac{2}{5 -  \sqrt{3} }

 \frac{2}{5 -  \sqrt{3} }  \times  \frac{5 +  \sqrt{3} }{5 +  \sqrt{3} }

 \frac{2(5 +  \sqrt{3} )}{(5 -  \sqrt{3}) \times (5 +  \sqrt{3} ) }

 \frac{2(5 +  \sqrt{3} )}{25 - 3}

 \frac{2(5 +  \sqrt{3}) }{22}

 \frac{5 +  \sqrt{3} }{11}

c)

 \frac{4 \sqrt{3} }{  \sqrt{5}  +  \sqrt{2} }

 \frac{4 \sqrt{3} }{ \sqrt{5}  +  \sqrt{2} }  \times  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5}  -  \sqrt{2} }

 \frac{4 \sqrt{3} \times ( \sqrt{5}  -  \sqrt{2}  )}{( \sqrt{5}  +  \sqrt{2}) \times ( \sqrt{5}  -  \sqrt{2}  )}

 \frac{4 \sqrt{15}  - 4 \sqrt{6} }{5 - 2}

 \frac{4 \sqrt{15}  - 4 \sqrt{6} }{3}

d)

 \frac{7}{ \sqrt{3}  -  \sqrt{2} }

 \frac{7}{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }

 \frac{7( \sqrt{3} +  \sqrt{2})  }{( \sqrt{3}  -  \sqrt{2} ) \times ( \sqrt{3} +  \sqrt{2}  )}

 \frac{7( \sqrt{3}  +  \sqrt{2} )}{3 - 2}

 \frac{7( \sqrt{3} +  \sqrt{2})  }{1}

7( \sqrt{3}  +  \sqrt{2} )

7 \sqrt{3}  + 7 \sqrt{2}

Att. Makaveli1996

Perguntas similares