• Matéria: Matemática
  • Autor: shanaira
  • Perguntado 7 anos atrás

Como resolver essa equação biquadratica passo a passo
(x {}^{2} - 2) {}^{2} + (x {}^{2} - 4) {}^{2} = 4

x {}^{4} - \frac{x {}^{2} - 3 }{2} = \frac{2x {}^{2} + 4 }{3}


Anexos:

Respostas

respondido por: CyberKirito
1

(x {}^{2} - 2) {}^{2} + (x {}^{2} - 4) {}^{2} = 4 \\  {x}^{4}  - 4 {x}^{2}  + 4 +  {x}^{4}  - 8 {x}^{2}  + 16 - 4  \\ = 0

 2{x}^{4}  - 12 {x}^{2}  + 16 = 0 \div 2 \\  {x}^{4}  - 6 {x}^{2}  + 8 = 0

Fazendo

{x}^{2}=t

 { ({x}^{2})}^{2}  - 6 {x}^{2} + 8 = 0 \\  {t}^{2}  - 6t + 8 = 0

a=1\\b=-6\\c=8

\Delta={b}^{2}-4ac\\\Delta={(-6)}^{2}-4.1.8\\\Delta=36-32=4

t=\dfrac{-b\pm\sqrt{\Delta}}{2a}

t=\dfrac{-(-6)\pm\sqrt{4}}{2.1}\\t=\dfrac{6\pm2}{2}

t_{1}=\dfrac{6+2}{2}=\dfrac{8}{2}=4\\t_{2}=\dfrac{6-2}{2}=\dfrac{4}{2}=2

{x}^{2}=t\\{x}^{2}=4\\x=\pm\sqrt{4}\\x=\pm2

{x}^{2}=t\\{x}^{2}=2\\x=\pm\sqrt{2}

s=\{ - 2, - \sqrt{2} ,\sqrt{2},2\}

x {}^{4} - \frac{x {}^{2} - 3 }{2} = \frac{2x {}^{2} + 4 }{3}

Multiplicando por 6 dos dois lados temos

6 {x}^{4}  - 3( {x}^{2}-3) = 2( 2{x}^{2} + 4) \\ 6 {x}^{4}-3 {x}^{2} + 9 = 4{x}^{2} + 8

6 {x}^{4}-3{x}^{2} - 4 {x}^{2} + 9 - 8 = 0

6 {x}^{4}  - 7 {x}^{2}  + 1 = 0 \\  6{ ({x}^{2} )}^{2}  - 7 {x}^{2}  + 1 = 0

fazendo

{x}^{2}=t

6 {t}^{2}  - 7t + 1 = 0

 a=6\\b=-7\\c=1

\Delta={b}^{2}-4ac\\\Delta={(-7)}^{2}-4.6.1\\\Delta=49-24=25

 \huge \: t=\dfrac{-b\pm\sqrt{\Delta}}{2a}

 \huge \: t=\dfrac{-( - 7)\pm\sqrt{25}}{2.6}

 \huge \: t=\dfrac{7\pm5}{12}

\huge \: t_{1}=\dfrac{7+5}{12}=1

\huge t_{2}=\dfrac{7-5}{12}=\dfrac{1}{6}

 \huge{x}^{2}=1\\ \huge  \\  \huge x=\pm\sqrt{1}\\ \huge \: x=\pm1

  \huge \: {x}^{2}=\dfrac{1}{6}

\huge x=\pm\sqrt{\dfrac{1}{6}} =  \dfrac{ \sqrt{6} }{6}


shanaira: Muito obrigada
CyberKirito: De nada
Perguntas similares