• Matéria: Matemática
  • Autor: EparaAcharODelta
  • Perguntado 7 anos atrás

3/(y+2) + 2/y + 3y/(2y+2)

Equação do segundo grau com fração​

Respostas

respondido por: Stichii
0

 \frac{3}{(y + 2)}  +  \frac{2}{y}  =  \frac{3y}{(2y + 4)}  \\  \\   \frac{3}{(y + 2)}  +  \frac{2}{y}  =  \frac{3}{1} . \frac{y}{(2y + 4)}  \\  \\  \frac{3}{(y + 2)}  +  \frac{2}{y}  = 3.( \frac{y}{2y + 4}) \\  \\  \frac{3}{(y + 2)}  +  \frac{2}{y}  =  \frac{3}{2} .( \frac{y}{y + 2} ) \\  \\   \frac{(3y + 2y + 4)}{y {}^{2}  + 2y}  =  \frac{3}{2} .( \frac{y}{(y + 2)} ) \\  \\  \frac{5y + 4}{y {}^{2}  + 2y}  =  \frac{3}{2} . (\frac{y}{y + 2} ) \\  \\    \frac{ \frac{5y + 4}{y {}^{2} + 2y } }{ \frac{3}{2} }  =  \frac{y}{(y + 2)}  \\  \\  \frac{5y + 4}{y {}^{2} + 2y } . \frac{2}{3}  =  \frac{y}{(y + 2)}  \\  \\  \frac{10y + 8}{3y {}^{2} + 6y }  =  \frac{y}{(y + 2)}  \\  \\  \frac{10y + 8}{3y(y + 2)}  =  \frac{y}{(y + 2)}  \\  \\  \frac{10y + 8}{3y}  =  \frac{y}{1}  \\  \\ 10y + 8 = 3y {}^{2}  \\  \\ 3y {}^{2}   - 10y - 8 = 0 \\  \\  \Delta = b {}^{2}  - 4.a.c \\  \Delta = ( - 10) {}^{2}  - 4.3.( - 8) \\  \Delta = 100 + 96 \\  \Delta = 196 \\  \\  \frac{x =  - b \pm \sqrt{ \Delta} }{2.a}  \\  \\ x  =  \frac{ - ( - 10) \pm \sqrt{196} }{2.3}  \\  \\ x =  \frac{10 \pm14}{6}  \\  \\ x {}^{1}  =  \frac{10 + 14}{6}  \\  \\ x {}^{1}  =  \frac{24}{6}  \\  \\ x {}^{1}  = 4 \\  \\ x {}^{2}  =  \frac{10 - 14}{6}  \\  \\ x {}^{2}  =  \frac{ - 4}{6}  \\  \\ x {}^{2}  =  \frac{ - 2}{3}

Perguntas similares