• Matéria: Matemática
  • Autor: ronebacana
  • Perguntado 7 anos atrás

integral sec^2x/3+tan x dx​

Respostas

respondido por: CyberKirito
0

\mathsf{u = 3 + tg(x) \to \: du =  {sec}^{2}(x)dx} \\ \displaystyle\mathsf{\int\dfrac{{sec}^{2}(x)}{3+tg(x)}dx}   \\ = \displaystyle\mathsf{\int\dfrac{du}{u} \: du  =  ln|u| + k  }

 \displaystyle\mathsf{\int\dfrac{{sec}^{2}(x)}{3+tg(x)}dx=ln|3+tg(x)|+k}

Perguntas similares