• Matéria: Matemática
  • Autor: izequielcavalcante
  • Perguntado 7 anos atrás

Integral x+1/(x-1)^4 dx


Gausss: X+1 está encima de (x-1) ou só o 1?

Respostas

respondido por: CyberKirito
0

Integral de funções racionais por frações parciais com fatores lineares repetidos.

 \frac{x + 1}{ {(x - 1)}^{4} } = \frac{A}{x - 1} +  \frac{B}{ {(x - 1)}^{2}}+\frac{C}{ {(x - 1)}^{3}} +  \frac{D}{ {(x - 1)}^{4} }

 \frac{x + 1 = A {(x - 1)}^{3}+B {(x - 1)}^{2} +C {(x - 1)}^{3}+D {(x - 1)}^{4}  }{ {(x - 1) }^{4}}

x + 1 = A {(x - 1)}^{3}+B {(x - 1)}^{2} +C(x - 1) \\  + D

x + 1 = A {x}^{3}  - 3A {x}^{2}+3Ax - A \\+B {x}^{2}-2Bx+B +Cx -C +D

x + 1 = A {x}^{3} + (-3A+B){x}^{2} \\+(3A - 2B + C)x \\  - A + B - C + D

Pela identidade de polinômios temos

\begin{cases}\mathsf{A=0}\\\mathsf{-3A+B=0}\\\mathsf{3A-2B+C=1}\\\mathsf{-A+B-C+D=1}\end{cases}

 \boxed{\boxed{\mathsf{A=0}}}

 \boxed{\boxed{\mathsf{-3.0+B=0\to~B=0}}}

 \boxed{\boxed{\mathsf{C=1}}}

\mathsf{-1+D=1}\\\mathsf{D=1+1}

 \boxed{\boxed{\mathsf{D=2}}}

\displaystyle\mathsf{\int\dfrac{x+1}{{(x-1)}^{4}}} \\ = \displaystyle\mathsf{\int\dfrac{x}{{(x-1)}^{4}}dx} + \displaystyle\mathsf{\int\dfrac{2}{{(x-1)}^{4}}dx}

\mathsf{u=x-1\to~x=u+1}\\\mathsf{du=dx} \\ \displaystyle\mathsf{\int\dfrac{x}{{(x-1)}^{4}}dx} = \displaystyle\mathsf{\int\dfrac{u + 1}{{u}^{4}}du}

\displaystyle\mathsf{\int({u}^{-3}+{u}^{-4})du =  -  \frac{1}{2{u}^{2} } - \frac{1}{ 3{u}^{3 }} + k}

\displaystyle\mathsf{\int\dfrac{x}{{(x-1)}^{4}}dx}  \\ = \mathsf{ -\frac{1}{2 {(x - 1)}^{2}} -  \frac{1}{3( {x - 1})^{3} }  + k}

\mathsf{t=x-1\to~dt=dx}\\\displaystyle\mathsf{\int\dfrac{2}{{(x-1)}^{4}}dx= \displaystyle \mathsf{\int\dfrac{2}{{t}^{4}}dt}} \\\mathsf{ -  \frac{2}{ 3{t}^{3} } + k }

\mathsf{t=x-1\to~dt=dx}\\\displaystyle\mathsf{\int\dfrac{2}{{(x-1)}^{4}}dx=\displaystyle  \mathsf{\int\dfrac{2}{{t}^{4}}dt}} \\=\mathsf{-\frac{2}{3 {t}^{3}} + k}

\displaystyle\mathsf{\int\dfrac{2}{{(x-1)}^{4}}dx}=\mathsf{\dfrac{-2}{3{(x-1)}^{3}}+k}

\displaystyle\mathsf{\int\dfrac{x+1}{{(x-1)}^{4}}}=\\-\dfrac{1}{2{(x-1)}^{2}}-\dfrac{1}{3{(x-1)}^{3}}-\dfrac{2}{3{(x-1)}^{3}}</p><p>.

\displaystyle\mathsf{\int\dfrac{x+1}{{(x-1)}^{4}}} =  \\ \mathsf{ -\frac{1}{2 {(x - 1)}^{2} }  -  \frac{1}{ {(x - 1)}^{3} } + k }


Gausss: Como vcs conseguem usar essas Letras aí mano?
Gausss: Muito top
CyberKirito: É um recurso chamado Latex
Gausss: A sim pdc vou procurar sobre
Gausss: Valew
Perguntas similares