Respostas
Resposta:
a)falso
b)verdadeiro
c) falso
d) verdadeiro
e) verdadeiro
f)verdadeiro
g)verdadeiro
h)falso
i) falso
j) veradeiro
k) verdadeiro
Explicação passo-a-passo:
base de um logaritmo não for um valor maior que zero e diferente de 1, ou se o logaritmando desse mesmo logaritmo não for um valor positivo, então o logaritmo não poderá existir.
estou considerando x=n
a⃗⃗)l⃗o⃗g⃗⃗-⃗₃₃⃗⃗(-3)ⁿ=⃗27 = (-3)ⁿ=(-3)¹/³ n=√(-3) nenhum alor de n (x) satisfaria pois nao e um numero real e sim imaginario
b) l⃗⃗o⃗gₙ₀ n=2 = 0ⁱ²=nao seria impossivel pois nao ha numero para elevar a base zero para obter n
⃗c)log₅ 25=n 5ⁿ=25 = 5ⁿ=5² n=2
d) log₁-4=n 1ⁿ⁼=-4 nenhum valor de n satisfaria a equacao
e)log₄ 64=x x⁴=64 = x⁴=4³ x=3
F) log-₃ 81=n=-3ⁿ=81 =-3ⁿ=(-3)¹/⁴ =n=√(-4) nao satisfaz numero nao real e sim imaginario
g) O logaritmo de qualquer número a, na própria base a, será igual a 1.
log₉9=x x⁹=9 x=1
h) log₁ 7=n =1ⁿ=7 as base sao diferentes e obrigatorio que a base seja maior que zero e diferente de 1
i) log₅ 1=1 5¹=1 nao ha valor que satisfaca
j) log₃ 9=n 3ⁿ=9 =3ⁿ=3² =n=2
k) log₁₀ 100=n=10ⁿ=100=10ⁿ=10²n=2 quando abase nao aparece fica subentendido que e 10