Observe a sequência de numeros: (0,2,6,14,30,62,...) ou seja ,a,= 0, a = 2 a, = 6, a = 14 a=30 =62 ,... a expressão numérica que representa o termo geral da sequência é. A)n² -1. / B)2(n-1)² / C) n²- n /D) 2n -2 /E) 2n -2
Respostas
A forma mais simples de resolver é testando as alternativas e vendo se elas se encaixam na sequência.
Sabendo que , , , vamos ver se para cada alternativa conseguimos encontrar esses termos substituindo n por 1, 2 e 3.
- n² - 1
n = 1 → 1² - 1 = 0
n = 2 → 2² - 1 = 4 - 1 = 3
Veja que o segundo termo é 3, então já eliminamos essa alternativa.
- 2( n - 1 )²
n = 1 → 2(1 - 1)² = 2.0 = 0
n= 2 → 2(2 - 1)² = 2.1 = 2
n = 3 → 2(3 - 1)² = 2.4 = 8
Veja que o terceiro termo é 8, então já eliminamos essa alternativa também.
- n² - n
n = 1 → 1² - 1 = 0
n = 2 → 2² - 2 = 4 - 2 = 2
n = 3 → 3² - 3 = 9 - 3 = 6
n = 4 → 4² - 4 = 16 - 4 = 12
Está incorreto.
- 2ⁿ - 2
n = 1 → 2¹ - 2 = 0
n = 2 → 2² - 2 = 4 - 2 = 2
n = 3 → 2³ - 2 = 8 - 2 = 6
A sequencia está correta.
- 2n - 2
n = 1 → 2.1 - 2 = 0
n = 2 → 2.2 - 2 = 4 - 2 = 2
n = 3 → 2.3 - 2 = 6 - 2 = 4
Como o terceiro termo deveria ser 6, esta também está incorreta.
Resposta: Letra D.
Aprenda mais em:
brainly.com.br/tarefa/26060741
brainly.com.br/tarefa/26053312
Resposta:
(0,2,6,14,30,62,...)
2ⁿ-2
n=1 ==>2¹-2=0
n=2 ==>2²-2 =4-2=2
n=3 ==>2³-2 =8-2=6
n=4 ==>2^4-2 =16-2=14
n=5 ==>2^5-2 =32-2=30
n=6 ==>2^6-2=64-2=62
aₙ = 2ⁿ-2