• Matéria: Matemática
  • Autor: gelianemendes
  • Perguntado 9 anos atrás

derivada da função raiz de 3x¹-7

Respostas

respondido por: Niiya
0
Regra da cadeia:

\boxed{\boxed{\dfrac{d}{dx}f(g(x))=f'(g(x))\cdot g'(x)=\dfrac{dy}{du}\dfrac{du}{dx}}}
______________________

f(x)=\sqrt{3x-7}

Seja h(x) = \sqrt{x}g(x)=3x-7

Então

h(g(x))=\sqrt{g(x)}=\sqrt{3x-7}~~~~\therefore~~~~\boxed{\boxed{f(x)=h(g(x))}}

Portanto:

f'(x)=h'(g(x))\cdot g'(x)\\\\\\f'(x)=\dfrac{1}{2\sqrt{3x-7}}\cdot\dfrac{d}{dx}(3x-7)\\\\\\f'(x)=\dfrac{1}{2\sqrt{3x-7}}\cdot3\\\\\\\boxed{\boxed{f'(x)=\dfrac{3}{2\sqrt{3x-7}}}}
Perguntas similares
9 anos atrás