Respostas
Definição de derivada de uma função num ponto onde x = x₀:
f'(x_{0})=\lim\limits_{h\rightarrow0}\dfrac{f(x_{0}+h)-f(x_{0})}{h}
__________________
Primeiro, vamos simplificar a expressão, achando f(1 + h) e f(1):
f(x)=4x^{2}+5x-3\\\\f(1+h)=4(1+h)^{2}+5(1+h)-3\\f(1+h)=4(1^{2}+2\cdot1\cdot h+h^{2})+5+5h-3\\f(1+h)=4(1+2h+h^{2})+2+5h\\f(1+h)=4+8h+4h^{2}+2+5h\\f(1+h)=4h^{2}+13h+6\\\\f(1)=4(1)^{2}+5(1)-3\\f(1)=4+5-3\\f(1)=6
Então:
f'(1)=\lim\limits_{h\rightarrow0}\dfrac{f(1+h)-f(1)}{h}\\\\\\f'(1)=\lim\limits_{h\rightarrow0}\dfrac{4h^{2}+13h+6-6}{h}\\\\\\f'(1)=\lim\limits_{h\rightarrow0}\dfrac{4h^{2}+13h}{h}\\\\\\f'(1)=\lim\limits_{h\rightarrow0}\dfrac{h(4h+13)}{h}\\\\\\f'(1)=\lim\limits_{h\rightarrow0}(4h+13)\\\\\\f'(1)=4\cdot0+13\\\\\\\boxed{\boxed{f'(1)=13}}