• Matéria: Matemática
  • Autor: famtube09
  • Perguntado 7 anos atrás

Seja P o incentro de um triângulo ABC, isósceles, de base AB. Sabendo que o ângulo APB mede 100°, determine os ângulos internos desse triângulo:
POR FAVOR ALGUEM ME AJUDA

Respostas

respondido por: luanafbh2
4

Como a base do triângulo é AB, temos que AC = BC e por consequência os ângulos BAC e ABC são congruentes, já que o triângulo é isósceles. Como o incentro é o encontro das bissetrizes de um triângulo, quando traçamos AP e PB eles dividem os ângulos da base ao meio.

Assim formamos o triângulo APB que é também isósceles. Veja a imagem.

A soma dos ângulos internos de um triângulos é 180 graus. Logo:

100 + 2x = 180

2x = 80

x = 40.

Como x é metade do ângulo da base do triângulo, temos que os ângulos BAC = ABC valem 2.40 = 80 graus.

Por fim, como a soma dos ângulos internos é 180 graus, nos resta que o angulo y será:

y + 80 + 80 = 180

y = 180 - 160

y = 20.

Aprenda mais em:

https://brainly.com.br/tarefa/25710345

https://brainly.com.br/tarefa/25679393

https://brainly.com.br/tarefa/25659690

Anexos:
Perguntas similares