• Matéria: Matemática
  • Autor: jotariro
  • Perguntado 9 anos atrás

1)considerando as propriedades log2 = 0,3 e log3=0,48, calcule o valor de:
a)log(2⁴.3⁵)
b)log(⁵√90)
c)log 0,05
d)log 3,6
e)log 2000
2)admitindo que log 8 = p, obtenha, em função de p:
a)log 16
b)log 1,28

Respostas

respondido por: Niiya
6
a)

log(2^{4}*3^{5})=log(2^{4})+log(3^{5})
log(2^{4}*3^{5})=4*log(2)+5*log(3)
log(2^{4}*3^{5})=4*0,3 + 5*0,48
log(2^{4}*3^{5})=1,2+2,4
log(2^{4}*3^{5})=3,6

b)

log(\sqrt[5]{90})=log(\sqrt[5]{3^{2}*10})
log(\sqrt[5]{90})=log([{3^{2}*10}]^{1/5})
log(\sqrt[5]{90})=log(3^{2/5}*10^{1/5})
log(\sqrt[5]{90})=log(3^{2/5})+log(10^{1/5})
log(\sqrt[5]{90})=(2/5)*log(3)+(1/5)*log(10)
log(\sqrt[5]{90})=(2/5)*0,48+(1/5)*1
log(\sqrt[5]{90})=(0,96/5)+(1/5)
log(\sqrt[5]{90})=(0,96+1)/5
log(\sqrt[5]{90})=1,96/5
log(\sqrt[5]{90})=0,392

c)

log(0,05)=log(5/100)
log(0,05)=log(1/20)
log(0,05)=log(1)-log(20)
log(0,05)=0-log(2*10)
log(0,05)=-[log(2)+log(10)]
log(0,05)=-[0,3+1]
log(0,05)=-[1,3]
log(0,05)=-1,3

d)

log(3,6)=log(36/10)
log(3,6)=log(3^{2}*2^{2}/10)
log(3,6)=log(3^{2})+log(2^{2})-log(10)
log(3,6)=2*log(3)+2*log(2)-1
log(3,6)=2*0,48+2*0,3-1
log(3,6)=0,96+0,6-1
log(3,6)=0,56

e)

log(2000)=log(2*10^{3})
log(2000)=log(2)+log(10^{3})
log(2000)=0,3+3*log(10)
log(2000)=0,3+3*1
log(2000)=0,3+3
log(2000)=3,3
__________________________________

log(8)=p
log(2^{3})=p
3*log(2)=p
log(2)=p/3

a)

log(16)=log(2^{4})
log(16)=4*log(2)
log(16)=4*p/3
log(16)=4p/3

b)

log(1,28)=log(2^{7}/100)
log(1,28)=log(2^{7})-log(100)
log(1,28)=7*log(2)-log(10^{2})
log(1,28)=7*(p/3) - 2*log(10)
log(1,28)=(7p/3)-2*1
log(1,28)=(7p/3)-2
log(1,28)=(7p - 6) / 3
Perguntas similares