Determina o valor de k na função f:R —R cuja lei de correspondência é f( x) = x dois em cima + kx + 4 e f( 3)= 19.
Dada a função f: R—R por f(x) = x dois em cima +2x , determine o valor de:
F(2) + f(3) -f(1)
Determinar em cada caso a imagem da função f: R—R cuja lei de correspondência e f(x) = x dois em cima + 1
A)F( raiz quadrada de 2 )
B) F(- raiz quadrada de 2 )
C)F(-4)
Dados os conjuntos A e B , verifique se cada situação a seguir representa uma função de A e B. (SIM OU NÃO)
A) dois elementos de A estão associados a um mesmo elemento B.
B)Todos os elementos de A estão associados a elementos distintos de B, exceto um , que está associado a dois elementos B.
C) um elemento de A não está associado a nenhum elemento B.
D)Um elemento de A está associado a mais de um elemento de B.
Me ajude por favor e urgente !!!!!!!
Respostas
Resposta:
Determina o valor de k na função f:R —R cuja lei de correspondência é f( x) = x dois em cima + kx + 4 e f( 3)= 19.
f(x) = x² + kx + 4
3² + k.3 + 4 = 19
9 + 3k + 4 = 19
3k = 19 - 9 - 4
3k = 6
k = 2
Dada a função f: R—R por f(x) = x dois em cima +2x , determine o valor de:
f(2) + f(3) -f(1)
f(x) = x² + 2x
f(2) = 2² + 2.2
f(2) = 4 + 4
f(2) = 8
f(x) = x² + 2x
f(3) = 3² + 2.3
f(3) = 9 + 6
f(3) = 15
f(x) = x² + 2x
f(1) = 1² + 2.1²
f(1) = 1 + 2
f(1) = 3
f(2) + f(3) -f(1)
8 + 15 - 3
= 20
Determinar em cada caso a imagem da função f: R—R cuja lei de correspondência e f(x) = x dois em cima + 1
A)F( raiz quadrada de 2 )
f(x) = x² + 1
f(√2) = (√2)² + 1
f(√2) = 2 + 1
f(√2) = 3
B) F(- raiz quadrada de 2 )
f(x) = x² + 1
f(-√2) = (-√2)² + 1
f(-√2) = -4 +1
f(-√2) = -3
C)F(-4)
f(x) = x² + 1
f(-4) = (-4)² + 1
f(-4) = 16 + 1
f(-4) = 17