• Matéria: Matemática
  • Autor: mredigolo0401
  • Perguntado 6 anos atrás

Calcular a Área usando a integral:
\int\limits^2_0 {(1+x^{2}-4-2x) } \, dx

Respostas

respondido por: CyberKirito
0

A(R) =  - \displaystyle\mathsf{\int\limits_{0}^{2}(1+x^{2}-4-2x)dx}\\A(R) =  - \displaystyle\mathsf{\left[x+\dfrac{1}{3}.x^{3}-4x-x^{2}\right] </p><p>_{0}^{2}}

\mathsf{A_{(R)} = -[2+\dfrac{1}{3}.2^{3}-4.2-2^{2}}] \\\mathsf{A_{(R)}=-[2+ \dfrac{8}{3}-8-4}]\\\mathsf{A_{(R)} =[\dfrac{6+8-24-12}{3}}]

\mathsf{A_{(R)}=\dfrac{22}{3}}

Perguntas similares