• Matéria: Matemática
  • Autor: minimo31
  • Perguntado 6 anos atrás

quanto vale o tangente de 15°​

Respostas

respondido por: rbgrijo
3

tg(a-b) = tga-tgb / 1 + tga.tgb

tg(60-45)= tg60-tg45 / 1+tg60.tg45

tg(15) = √3 -1 / 1 +√3. 1

tg15 = √3 -1 / √3 +1 ==> *(√3 -1)/(√3 -1)

tg15 = 3 -2√3 +1 / 3 -1

tg15 = 4 - 2√3 / 2

tg15 = 2 - √3


minimo31: obrigada (o)
rbgrijo: tg15 = 2 - √3
respondido por: Lukyo
1

Resposta:  \mathrm{tg}(15^\circ)=2-\sqrt{3}.

Explicação passo a passo:

Utilizaremos a identidade da tangente da diferença entre dois arcos:

    \mathrm{tg}(\alpha-\beta)=\dfrac{\mathrm{tg}(\alpha)-\mathrm{tg}(\beta)}{1+\mathrm{tg}(\alpha)\cdot \mathrm{tg}(\beta)}

Podemos escrever 15^\circ=60^\circ-45^\circ e aplicar aplicar a fórmula acima para \alpha=60^\circ e \beta=45^\circ, cujos valores das tangentes são conhecidos, pois são arcos notáveis:

    \mathrm{tg}(15^\circ)=\mathrm{tg}(60^\circ-45^\circ)\\\\=\dfrac{\mathrm{tg}(60^\circ)-\mathrm{tg}(45^\circ)}{1+\mathrm{tg}(60^\circ)\cdot \mathrm{tg}(45^\circ)}\\\\\\ =\dfrac{\sqrt{3}-1}{1+\sqrt{3}\cdot 1}\\\\\\ =\dfrac{\sqrt{3}-1}{1+\sqrt{3}} \\\\\\ =\dfrac{\sqrt{3}-1}{\sqrt{3}+1}

Para racionalizar o denominador, multiplique o numerador e o denominador por (\sqrt{3}-1):

    =\dfrac{(\sqrt{3}-1)\cdot (\sqrt{3}-1)}{(\sqrt{3}+1)\cdot (\sqrt{3}-1)}\\\\\\ =\dfrac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)\cdot (\sqrt{3}-1)}

Expanda o quadrado da diferença no numerador, e o produto da soma pela diferença no denominador (ver produtos notáveis):

    =\dfrac{(\sqrt{3})^2-2\cdot (\sqrt{3})\cdot 1+1^2}{(\sqrt{3})^2-(1)^2}\\\\\\ =\dfrac{3-2\sqrt{3}+1}{3-1}\\\\\\ =\dfrac{4-2\sqrt{3}}{2}\\\\\\ =\dfrac{\diagup\!\!\!\! 2\cdot (2-\sqrt{3})}{\diagup\!\!\!\! 2}

    \therefore~~\mathrm{tg}(15^\circ)=2-\sqrt{3}\quad\longleftarrow\quad\mathsf{resposta.}

Bons estudos!  

Perguntas similares