• Matéria: Matemática
  • Autor: jorgemiguel212ow2rd4
  • Perguntado 6 anos atrás

me ajude com essas conta de matematica , todas com a conta completa por favor

Anexos:

Respostas

respondido por: Anônimo
2

Explicação passo-a-passo:

a) Temos que:

\text{cos}~\dfrac{2\pi}{3}=\text{cos}~120^{\circ}=-\dfrac{1}{2}

\text{sen}~\dfrac{4\pi}{3}=\text{sen}~240^{\circ}=-\dfrac{\sqrt{3}}{2}

\text{sen}~\dfrac{2\pi}{3}=\text{sen}~120^{\circ}=\dfrac{\sqrt{3}}{2}

\text{cos}~\dfrac{4\pi}{3}=\text{cos}~240^{\circ}=-\dfrac{1}{2}

Assim:

A=\dfrac{-\left(-\frac{1}{2}\right)-\left(-\frac{\sqrt{3}}{2}\right)}{\frac{\sqrt{3}}{2}-\left(-\frac{1}{2}\right)}

A=\dfrac{\frac{1}{2}+\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}+\frac{1}{2}}

\boxed{A=1}

b) Veja que:

\text{sen}~\dfrac{7\pi}{4}=\text{sen}~315^{\circ}=-\dfrac{\sqrt{2}}{2}

\text{cos}~\dfrac{5\pi}{4}=\text{cos}~225^{\circ}=-\dfrac{\sqrt{2}}{2}

\text{cos}~\dfrac{3\pi}{4}=\text{cos}~135^{\circ}=-\dfrac{\sqrt{2}}{2}

\text{sen}~\dfrac{3\pi}{4}=\text{sen}~135^{\circ}=\dfrac{\sqrt{2}}{2}

Desse modo:

B=\dfrac{-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}}

\boxed{B=1}

c) Temos que:

\text{cos}~1080^{\circ}=\text{cos}~0^{\circ}=1

\text{sen}~(-315^{\circ})=-\text{sen}~315^{\circ}=\dfrac{\sqrt{2}}{2}

\text{sen}~405^{\circ}=\text{sen}~45^{\circ}=\dfrac{\sqrt{2}}{2}

\text{cos}~11\pi=\text{cos}~\pi=\text{cos}~180^{\circ}=-1

Então:

C=\dfrac{1+\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}-(-1)}

C=\dfrac{1+\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}+1}

\boxed{C=1}

d) Note que:

\text{tg}~45^{\circ}=1

\text{sen}~180^{\circ}=0

\text{cos}~90^{\circ}=0

\text{cos}~30^{\circ}=\dfrac{\sqrt{3}}{2}

\text{tg}~180^{\circ}=0

Assim:

D=\dfrac{1+0+3\cdot0}{8\cdot\frac{\sqrt{3}}{2}-0}

D=\dfrac{1}{4\sqrt{3}}

D=\dfrac{1}{4\sqrt{3}}\cdot\dfrac{\sqrt{3}}{\sqrt{3}}

D=\dfrac{\sqrt{3}}{4\cdot3}

\boxed{D=\dfrac{\sqrt{3}}{12}}

e) Lembre-se que:

\text{cos}~\dfrac{\pi}{6}=\text{cos}~30^{\circ}=\dfrac{\sqrt{3}}{2}

\text{sen}~\dfrac{\pi}{3}=\text{sen}~60^{\circ}=\dfrac{\sqrt{3}}{2}

Logo:

E=\dfrac{2\cdot\frac{\sqrt{3}}{2}-4\cdot\frac{\sqrt{3}}{2}}{4\cdot\frac{\sqrt{3}}{2}+8\cdot\frac{\sqrt{3}}{2}}

E=\dfrac{\sqrt{3}-2\sqrt{3}}{2\sqrt{3}+4\sqrt{3}}

E=\dfrac{-\sqrt{3}}{6\sqrt{3}}

\boxed{E=-\dfrac{1}{6}}

Perguntas similares