Na figura a seguir, o seguimento AC corresponde ao diâmetro da circunferência
Utilize seus conhecimentos sobre ângulos centrais e calcule a medida dos arcos BC
е ВСЕ.
Respostas
Resposta:
Explicação passo-a-passo:
A circunferência possui características não comumente encontradas em outras figuras planas, como o fato de ser a única figura plana que pode ser rodada em torno de um ponto sem modificar sua posição aparente. É também a única figura que é simétrica em relação a um número infinito de eixos de simetria. A circunferência é importante em praticamente todas as áreas do conhecimento como nas Engenharias, Matemática, Física, Quimica, Biologia, Arquitetura, Astronomia, Artes e também é muito utilizado na indústria e bastante utilizada nas residências das pessoas.
Circunferência e Círculo
Circunferência: A circunferência é o lugar geométrico de todos os pontos de um plano que estão localizados a uma mesma distância r de um ponto fixo denominado o centro da circunferência. Esta talvez seja a curva mais importante no contexto das aplicações.
Círculo: (ou disco) é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo O é menor ou igual que uma distância r dada. Quando a distância é nula, o círculo se reduz a um ponto. O círculo é a reunião da circunferência com o conjunto de pontos localizados dentro da mesma. No gráfico acima, a circunferência é a linha de cor verde-escuro que envolve a região verde, enquanto o círculo é toda a região pintada de verde reunida com a circunferência.
Pontos interiores de um círculo e exteriores a um círculo
Pontos interiores: Os pontos interiores de um círculo são os pontos do círculo que não estão na circunferência.
Pontos exteriores: Os pontos exteriores a um círculo são os pontos localizados fora do círculo.
Raio, corda e diâmetro
Raio: Raio de uma circunferência (ou de um círculo) é um segmento de reta com uma extremidade no centro da circunferência e a outra extremidade num ponto qualquer da circunferência. Na figura, os segmentos de reta OA, OB e OC são raios.
Corda: Corda de uma circunferência é um segmento de reta cujas extremidades pertencem à circunferência. Na figura, os segmentos de reta AC e DE são cordas.
Diâmetro: Diâmetro de uma circunferência (ou de um círculo) é uma corda que passa pelo centro da circunferência. Observamos que o diâmetro é a maior corda da circunferência. Na figura, o segmento de reta AC é um diâmetro.
Posições relativas de uma reta e uma circunferência
Reta secante: Uma reta é secante a uma circunferência se essa reta intercepta a circunferência em dois pontos quaisquer, podemos dizer também que é a reta que contém uma corda.
Reta tangente: Uma reta tangente a uma circunferência é uma reta que intercepta a circunferência em um único ponto P. Este ponto é conhecido como ponto de tangência ou ponto de contato. Na figura ao lado, o ponto P é o ponto de tangência e a reta que passa pelos pontos E e F é uma reta tangente à circunferência.
Observações:
Raios e diâmetros são nomes de segmentos de retas mas às vezes são também usados como os comprimentos desses segmentos. Por exemplo, podemos dizer que ON é o raio da circunferência, mas é usual dizer que o raio ON da circunferência mede 10cm ou que o raio ON tem 10cm.
Tangentes e secantes são nomes de retas, mas também são usados para denotar segmentos de retas ou semi-retas. Por exemplo, "A tangente PQ" pode significar a reta tangente à circunferência que passa pelos pontos P e Q mas também pode ser o segmento de reta tangente à circunferência que liga os pontos P e Q. Do mesmo modo, a "secante AC" pode significar a reta que contém a corda BC e também pode ser o segmento de reta ligando o ponto A ao ponto C.
abre esse link
http://www.uel.br/projetos/maTangente comum interna Tangente comum externa
tessencial/geometria/circulo/z20819.png
A medida do arco menor é a medida do ângulo central correspondente a m(AÔB) e a medida do arco maior é 360 graus menos a medida do arco menor m(AÔB).
A medida da semicircunferência é 180 graus ou Pi radianos.
Em circunferências congruentes ou em uma simples circunferência, arcos que possuem medidas iguais são arcos congruentes.
Em uma circunferência, se um ponto E está entre os pontos D e F, que são extremidades de um arco menor, então: m(DE)+m(EF)=m(DF).
Se o ponto E está entre os pontos D e F, extremidades de um arco maior: m(DE)+m(EF)=m(DEF).
Apenas esta última relação faz sentido para as duas últimas figuras apresentadas.
Propriedades de arcos e cordas
Uma corda de uma circunferência é um segmento de reta que une dois pontos da circunferência. Se os extremos de uma corda não são extremos de um diâmetro eles são extremos de dois arcos de circunferência sendo um deles um arco menor e o outro um arco maior. Quando não for especificada, a expressão arco de uma corda se referirá ao arco menor e quanto ao arco maior sempre teremos que especificar.