51) Determine a medida de comprimento dos lados
de um trapézio PQRS que tem medida de perimetro de 41 cm e medidas de comprimento dos lados, em centímetro, dadas por PQ = 3x + 2,
QR = x+1, RS = x e OS = 2x - 4.
Alguém sabe me responder ?!
Respostas
Resposta:
Explicação passo-a-passo:
Perimetro é a soma de todos os lados
PQ + QR + RS + OS = 41
3x + 2 + x+1 + x + 2x - 4 = 41
6x - 1 = 41
6x = 42
x = 7
PQ = 3x + 2
PQ = 3*7 + 2
PQ = 23 cm
QR = x + 1
QR = 7 + 1
QR = 8 cm
RS = x
RS = 7 cm
OS = 2x - 4
OS = 2*7 -4
OS = 10 cm
A medida dos lados desse trapézio é igual a
- PQ = 20 cm
- QR = 7 cm
- RS = 6 cm
- OS = 8 cm
Equação
As equações são expressões matemáticas, um sinal de igualdade, onde para que a equação seja dada como verdadeira o resultado em um lado deve ser igual ao outro lado.
Para encontrarmos qual o comprimento dos lados que esse trapézio possui temos que expressar a equação do perímetro, determinando o valor de x. Calculando, temos:
41 = 3x + 2 + x + 1 + x + 2x - 4
41 = 3x + x + x + 2x + 2 + 1 - 4
41 = 7x + - 1
41 + 1 = 7x
7x = 42
x = 42/7
x = 6
Determinando as medidas do lado, temos:
- PQ = 3*6 + 2 = 18 + 2 = 20 cm
- QR = 6 + 1 = 7 cm
- RS = 6 cm
- OS = 2*6 - 4 = 12 - 4 = 8 cm
Aprenda mais sobre equação aqui:
brainly.com.br/tarefa/9847148
#SPJ2