Respostas
respondido por:
10
FUNÇÃO SENO
Definição
Chamamos de função seno a função f: R® R que a cada número real x, associa o seno desse número: f: R® R, f(x) = sen x
O domínio dessa função é R e a imagem é Im [ -1,1] ; visto que, na circunferência trigonométrica o raio é unitário e, pela definição do seno, –1 £ sen x £ 1, ou seja:
Domínio de f(x) = sen x; D(sen x) = R.
Imagem de f(x) = sen x; Im(sen x) = [ -1,1] .
Sinal da Função:
Como seno x é a ordenada do ponto-extremidade do arco:
f(x) = sen x é positiva no 1° e 2° quadrantes (ordenada positiva)
f(x) = sen x é negativa no 3° e 4° quadrantes (ordenada negativa)
FUNÇÃO COSSENO - Cossenóide
Definição
Chamamos de função cosseno a função f: R® R que a cada número real x , associa o cosseno desse número: f: R® R, f(x) = cos x.
O domínio dessa função é R e a imagem é Im [ -1,1] ; visto que, na circunferência trigonométrica o raio é unitário e, pela definição do cosseno, –1 £ cos x £ 1, ou seja:
Domínio de f(x) = cos x; D(cos x) = R.
Imagem de f(x) = cos x; Im(cos x) = [ -1,1] .
Sinal da Função:
Como cosseno x é a abscissa do ponto-extremidade do arco:
f(x) = cos x é positiva no 1° e 2° quadrantes (abscissa positiva)
f(x) = cos x é negativa no 3° e 4° quadrantes (abscissa negativa)
ACHO QUE É ISSO.
Definição
Chamamos de função seno a função f: R® R que a cada número real x, associa o seno desse número: f: R® R, f(x) = sen x
O domínio dessa função é R e a imagem é Im [ -1,1] ; visto que, na circunferência trigonométrica o raio é unitário e, pela definição do seno, –1 £ sen x £ 1, ou seja:
Domínio de f(x) = sen x; D(sen x) = R.
Imagem de f(x) = sen x; Im(sen x) = [ -1,1] .
Sinal da Função:
Como seno x é a ordenada do ponto-extremidade do arco:
f(x) = sen x é positiva no 1° e 2° quadrantes (ordenada positiva)
f(x) = sen x é negativa no 3° e 4° quadrantes (ordenada negativa)
FUNÇÃO COSSENO - Cossenóide
Definição
Chamamos de função cosseno a função f: R® R que a cada número real x , associa o cosseno desse número: f: R® R, f(x) = cos x.
O domínio dessa função é R e a imagem é Im [ -1,1] ; visto que, na circunferência trigonométrica o raio é unitário e, pela definição do cosseno, –1 £ cos x £ 1, ou seja:
Domínio de f(x) = cos x; D(cos x) = R.
Imagem de f(x) = cos x; Im(cos x) = [ -1,1] .
Sinal da Função:
Como cosseno x é a abscissa do ponto-extremidade do arco:
f(x) = cos x é positiva no 1° e 2° quadrantes (abscissa positiva)
f(x) = cos x é negativa no 3° e 4° quadrantes (abscissa negativa)
ACHO QUE É ISSO.
Perguntas similares
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás