Respostas
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da sequência (6, 10,...), tem-se:
a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;
b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:1
c)décimo quinto termo (a₁₅): ?
d)número de termos (n): 15 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 15ª), equivalente ao número de termos.)
e)Embora não se saiba o valor do décimo quinto termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos de crescem e, para que isto aconteça, necessariamente se deve somar um valor constante negativo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 10 - 6 ⇒
r = 4 (Razão positiva, conforme prenunciado no item e acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o décimo quinto termo:
an = a₁ + (n - 1) . r ⇒
a₁₅ = a₁ + (n - 1) . (r) ⇒
a₁₅ = 6 + (15 - 1) . (4) ⇒
a₁₅ = 6 + (14) . (4) ⇒ (Veja a Observação 2.)
a₁₅ = 6 + 56 ⇒
a₁₅ = 62
Observação 2: Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).
Resposta: O décimo quinto termo da P.A.(6, 10, ...) é 62.
=======================================================
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₁₅ = 62 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o décimo quinto termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₁₅ = a₁ + (n - 1) . (r) ⇒
62 = a₁ + (15 - 1) . (4) ⇒
62 = a₁ + (14) . (4) ⇒
62 = a₁ + 56 ⇒ (Passa-se 56 ao 1º membro e altera-se o sinal.)
62 - 56 = a₁ ⇒
6 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 6 (Provado que a₁₅ = 62.)
→Veja outras tarefas relacionadas à determinação de termos em progressão aritmética e resolvidas por mim:
https://brainly.com.br/tarefa/6487
https://brainly.com.br/tarefa/27867386
https://brainly.com.br/tarefa/3960163
brainly.com.br/tarefa/11536192
brainly.com.br/tarefa/22357005
brainly.com.br/tarefa/27411775
brainly.com.br/tarefa/27380828
brainly.com.br/tarefa/10721299
brainly.com.br/tarefa/2403541
brainly.com.br/tarefa/27380724