• Matéria: Matemática
  • Autor: gustacampos0
  • Perguntado 6 anos atrás

Observe uma maneira de resolver a equação (x+2)²=9
De maneira parecida, resolva:
COM CALCULOS.

A) (x+1)²= 16

B) (x-5)²= 4

C) (3+x)²= 49

D) 25= (4-x)²​

Respostas

respondido por: TayMay
6

Explicação passo-a-passo:

a) \:  \:  \:  {(x + 1)}^{2}  = 16 \\ (x + 1) \times (x + 1) = 16 \\  {x}^{2}  + x + x + 1 = 16 \\  {x}^{2}  + x + x + 1 - 16 = 0 \\  {x }^{2}  + 2x - 15 = 0 \\  \\ a = 1 \\ b = 2 \\ c =  - 15 \\  \\ x =  \frac{ - b +  -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\ x =   \frac{ - 2 +  -  \sqrt{ {2}^{2}  - 4 \times 1 \times ( - 15)} }{2 \times 1}  \\ x =  \frac{ - 2 +  -  \sqrt{4 + 60} }{2}  \\ x =  \frac{ - 2  +  -  \sqrt{64} }{2}  \\ x =   \frac{ - 2 +  - 8}{2}  \\  \\  {x}^{1}  =  \frac{ - 2 + 8}{2}  =  {x}^{1}  =  \frac{6}{2}  =  {x}^{1}  = 3 \\  {x}^{2}  =  \frac{ -  2 - 8}{2}  =  {x}^{2}  =  - \frac{10}{2} =  {x}^{2}   =  - 5

b) \:  \:  \:  {(x - 5)}^{2}  = 4 \\ (x - 5) \times (x - 5) = 4 \\  {x}^{2}  - 5x - 5x + 25 = 4 \\  {x}^{2}  - 5x - 5x + 25 - 4 = 0 \\  {x }^{2}  - 10x + 21 = 0 \\  \\ a = 1 \\ b =  - 10 \\ c = 21 \\  \\ x =  \frac{ - ( - 10) +  -  \sqrt{ {( - 10)}^{2}  - 4 \times 1 \times 21} }{2 \times 1}  \\ x =  \frac{10 +  -  \sqrt{100 - 84} }{2}  \\ x =  \frac{10  +  -  \sqrt{16} }{2}  \\ x =  \frac{10 +  - 4}{2}  \\  \\  {x}^{1}  =  \frac{10 + 4}{2 }  =  {x}^{1}  =  \frac{14}{2}  =  {x}^{1}  = 7 \\  {x}^{2}  =  \frac{10 - 4}{2}  =  {x}^{2}  =  \frac{6}{2}  =  {x}^{2}  = 3

c) \:  \:  \:  {(3 + x)}^{2}  = 49 \\ (3 + x) \times (3 + x) = 49 \\ 9 + 3x + 3x +  {x}^{2}  = 49 \\  {x}^{2}  + 3x + 3x + 9 - 49 = 0 \\  {x}^{2}  + 6x - 40 = 0 \\  \\ a = 1 \\ b = 6 \\ c =  - 40 \\  \\ x =  \frac{ - 6 +  -  \sqrt{ {6}^{2}  - 4 \times 1 \times ( - 40)} }{2 \times 1}  \\ x =  \frac{ - 6 +  -  \sqrt{36 + 160} }{2}  \\ x =  \frac{ - 6 +  -  \sqrt{196} }{2}  \\ x =  \frac{ - 6 +  - 14}{2}  \\  \\  {x}^{1}  =  \frac{ - 6 + 14}{2}  =  {x}^{1}  =  \frac{8}{2}  =  {x}^{1}  = 4 \\  {x}^{2}  =  \frac{ - 6 - 14}{2}  =  {x}^{2}  =   - \frac{20}{2}  =  {x}^{2}  =  - 10

d) \:  \:  \: 25 =  {(4 - x)}^{2}  \\  {(4 - x)}^{2}  = 25 \\ (4 - x) \times (4 -  x) = 25 \\ 16 - 4x - 4x +  {x}^{2}  = 25 \\  {x}^{2}  - 4x - 4x + 16 - 25 = 0 \\  {x}^{2}  - 8x - 9 = 0 \\  \\ a = 1 \\ b =  - 8 \\ c =  - 9 \\  \\ x =  \frac{ - ( - 8) +  -  \sqrt{ {( - 8)}^{2}  - 4 \times 1 \times ( - 9)} }{2 \times 1}  \\ x =  \frac{8  +  -  \sqrt{64 + 36} }{2}  \\ x =  \frac{8 +  -  \sqrt{100} }{2}  \\ x =  \frac{8 +  - 10}{2}  \\  \\  {x}^{1}  =  \frac{8 + 10}{2}  =  {x}^{1}  =  \frac{18}{2}  =  {x}^{1}  = 9 \\  {x}^{2}  =  \frac{8 - 10}{2}  =  {x}^{2}  =  -  \frac{2}{2}  =  {x}^{2}  =  - 1

Perguntas similares