• Matéria: Matemática
  • Autor: aplicativosecia
  • Perguntado 6 anos atrás

Determine a posição relativa das retas r: X = (1,2,0) +α (1,1,3) e s: X = (2,1,1) + β (1,-1,2), e calcule a distância entre elas.


ctrigo87: esta fazendo a prova da univesp? tem a resposta dos outros ex?
fduarte548: tambem estou fazendo alguem tem alguma resposta ?
ctrigo87: eu não sei nenhuma...rsrsrs...se puderem falar alguma ajuda .rsrsrs
fduarte548: ninguem consegui nada ?
devacirsiqueira: Tbm estou na procura
luisagalvaolmoraes: Olá, alguém consegui responder as objetivas?

Respostas

respondido por: silvageeh
2

As retas r e s são reversas e a distância entre elas é igual a √(2/15)

Observe que o vetor direção da reta r é u = (1,1,3) enquanto que o vetor direção da reta s é v = (1,-1,2).

Note que u e v são Linearmente Independentes. Isso significa que as retas são concorrentes ou reversas.

Vamos reescrever as duas retas:

{x = 1 + α

{y = 2 + α

{z = 3α

e

{x = 2 + β

{y = 1 - β

{z = 1 + 2β.

Igualando as coordenadas, obtemos:

{1 + α = 2 + β

{2 + α = 1 - β

{3α = 1 + 2β

Podemos dizer que α = β + 1. Substituindo esse valor na segunda equação:

2 + β + 1 = 1 - β

2 + β = -β

β = -1.

Consequentemente:

α = -1 + 1

α = 0.

Substituindo esses valores na terceira equação:

3.0 = 1 + 2.(-1)

0 = 1 - 2

0 = -1.

O que não é verdade. Logo, o sistema não tem solução e as retas r e s são reversas.

Note que A = (1 + α, 2 + α, 3α) ∈ r e B = (2 + β, 1 - β, 1 + 2β) ∈ s.

O vetor AB é igual a AB = (1 + β - α, -1 - β - α, 1 + 2β - 3α) e ele é perpendicular aos vetores u e v, ou seja, <AB,u> = 0 e <AB,v> = 0.

Dito isso, obtemos:

1 + β - α - 1 - β - α + 3 + 6β - 9α = 0

-11α + 6β = -3

e

1 + β - α + 1 + β + α + 2 + 4β - 6α = 0

-6α + 6β = -4.

Logo, os valores de α e β são, respectivamente, -1/5 e -13/15, e os pontos A e B são iguais a A = (4/5,9/5,-3/5) e B = (17/15,28/15,-11/15).

Portanto, a distância entre as retas r e s é igual à distância entre os pontos A e B, ou seja, d(A,B) = √(2/15).


luisagalvaolmoraes: Muito obrigada ajudou muito.
Perguntas similares