• Matéria: ENEM
  • Autor: fabioluizfreitas
  • Perguntado 6 anos atrás

O RETÂNGULO "ABCD" TEM ÁREA 105m². O LADO DO QUADRADO "EFGD" MEDE EM METROS: a)2 b)5 c)2√2 d)5√2 e)6 (FOTO ABAIXO)

Anexos:

Respostas

respondido por: thalesluanlucaspasqu
2

Resposta:

Explicação:

(10 + x)(2 + x) = 105

20 + 10x + 2x + x^2 = 105

-85 + 12x + x^2=

Resolvendo baskara

x1 = 5

x2 = -17

pegando o numero positivo

O lado do quadrado mede 5m

respondido por: jalves26
0

O lado do quadrado EFGD mede 5 m.

Alternativa B.

Equação do 2° grau

Representamos por x a medida do lado do quadrado EFGD. Assim, as medidas dos lados do retângulo ABCD podem ser representadas por:

AB = CD = 2 + x

AD = BC = 10 + x

Como a área desse retângulo é igual a 105 m², temos:

Área = AB·AD

105 = (2 + x)·(10 + x)

105 = 20 + 2x + 10x + x²

105 = 20 + 12x + x²

x² + 12x + 20 - 105 = 0

x² + 12x - 85 = 0

O que temos que fazer agora é resolver essa equação do 2° grau.

Os coeficientes são: a = 1, b = 12, c = - 85.

Δ = b² - 4ac

Δ = 12² - 4.1.(-85)

Δ = 144 + 340

Δ = 484

x = - b ± √Δ

         2a

x = - 12 ± √484

              2

x = - 12 ± 22

          2

x' = 10 = 5

       2

x'' = - 34 = - 17

          2

Como é medida de comprimento, não pode ser negativo. Então, a única solução possível é x = 5 m.

Mais sobre equação do 2° grau em:

https://brainly.com.br/tarefa/8948

#SPJ2

Anexos:
Perguntas similares