• Matéria: Matemática
  • Autor: andrieleduarte
  • Perguntado 6 anos atrás

Derivar a função definida por g(x)=2x/(x2-1)

Respostas

respondido por: CyberKirito
4

\mathsf{g(x)=\dfrac{2x}{x^2-1}}\\\mathsf{g'(x)=\dfrac{2(x^2-1)-2x.2x}{(x^2-1)^2}}\\\mathsf{g'(x)=\dfrac{2x^2-2-4x^2}{(x^2-1)^2}}

\large\boxed{\boxed{\boxed{\boxed{\mathsf{g'(x)=-\dfrac{2x^2+2}{(x^2-1)^2}}}}}}

respondido por: Makaveli1996
3

Oie, Td Bom?!

g(x) =  \frac{2x}{x {}^{2} - 1 }

g'(x) =  \frac{d}{dx} ( \frac{2x}{x {}^{2} - 1 } )

g'(x) =  \frac{ \frac{d}{dx} (2x) \: . \: (x {}^{2}  - 1) - 2x \: . \:  \frac{d}{dx} (x {}^{2}  - 1)}{(x {}^{2} - 1) {}^{2}  }

g'(x) =  \frac{2(x {}^{2}  - 1) - 2x \: . \: 2x}{(x {}^{2} - 1) {}^{2}  }

g'(x) =  \frac{2x {}^{2} - 2 - 4x {}^{2}  }{(x {}^{2} - 1) {}^{2}  }

g'(x) =  \frac{ - 2x {}^{2} - 2 }{(x {}^{2} - 1) {}^{2}  }

g'(x) =  -  \frac{2x {}^{2}  + 2}{(x {}^{2}  - 1) {}^{2} }

Att. Makaveli1996

Perguntas similares