QUESTÃO 01/ H.E.1.19
A distância entre dols planetas é de
825.000.000.000 de km. Qual essa distância em
notação cientifica
Respostas
Resposta:
825.000.000.000 = 8,25 × 10^11
OBS: Esse símbolo: ^ , significa "elevado" ou seja dez elevado a onze.
Explicação passo-a-passo:
Para transformar um número muito grande ou muito pequeno em notação científica devemos seguir o seguinte passo a passo:
1. Encontrar o coeficiente ou mantissa da notação científica:
O coeficiente ou mantissa é o número que substituirá o N na fórmula: N . 10n. Para isso devemos colocar a vírgula no primeiro número significativo, ou seja, o primeiro algarismo diferente de 0 zero, um número significativo é um número que possui valor;
Exemplo
0,0002, ao descolar a vírgula para a direita até o 2, teremos 2,0 = 2.
54256: o primeiro número significativo é o 5, então teremos 5,4256.
0,000000000000009: o primeiro número significativo é 9, deslocamos a vírgula e temos o coeficiente ou mantissa, que é 9.
2. Encontrar o valor do expoente n da fórmula: N . 10n:
O valor que o expoente n recebe é a quantidade de vezes que deslocamos a vírgula.
Primeiro caso: se tivermos um número decimal, isto é, um número menor que 1, o expoente ou ordem de grandeza será negativo e o seu valor será igual a quantidade que tivemos que deslocar a vírgula para a direita.
Exemplo:
Considere o número 0,0000000034, escreva-o em notação científica:
Temos a fórmula: N . 10n.
Primeiro encontremos o valor de N:
N é o primeiro número significativo 3,4.
O valor da ordem de grandeza, ou seja, do expoente n é a quantidade de vezes que deslocamos a vírgula até chegar a 3,4.
Logo, 3,4 . 10-9
Como temos um número decimal, o sinal do expoente 9 é negativo, pois trata-se de um número muito pequeno.
Segundo caso: Considere o número 225000000000000000000000, escreva-o em notação científica:
Temos a fórmula: N . 10n.
Vamos encontrar o valor de N:
O valor de N é o primeiro número significativo, ou seja, o número 2.
Vamos encontrar o valor do expoente n:
225000000000000000000000 é um número inteiro e a vírgula está implícita, mas poderia ser representado assim: 225000000000000000000000,0. Dessa forma, o valor de n é a quantidade de vezes que deslocamos a vírgula para a esquerda até o primeiro número significativo da esquerda para a direita, o 2.
Deslocamos 23 vezes, então n = 23.
Portanto, 2,25 . 1023.
O número 23 é positivo, pois trata-se de um número muito grande, ou seja, não é um decimal.
Perceba que ao escrevermos em notação científica somente os zeros desaparecem, os outros números após a vírgula permaneceram.
•╭──────────────
Espero ter ajudado✨
•╰─► ۪۫❁ཻུ۪۪⸙͎