• Matéria: Matemática
  • Autor: felipedeoliveira101
  • Perguntado 6 anos atrás

Considere a transformação linear F:R³->R³, tal que F(x,y,z)=(x-y+2z,2x+z,y+3z). Determine:

-Uma base e dimensão para Núcleo de F e imagem de F.​

Respostas

respondido por: CyberKirito
3

\mathsf{F:\mathbb{R}^3\to\mathbb{R}^3~~F(x, y, z)=(x-y+2z,2x+z,y+3z)}

\mathsf{N(F)=\{(x, y, z)\in\mathbb{R}^3/F(x, y, z,) =(0,0,0)\}}

\mathsf{(x-y+2z,2x+z,y+3z)=(0,0,0)}

\begin{cases}\mathsf{x-y+2z=0}\\\mathsf{2x+z=0}\\\mathsf{y+3z=0}\end{cases}

somando a 1ª equação com a 3ª equação temos:

\mathsf{x-y+2z+y+3z=0\to~x+5z=0}\\\mathsf{x=-5z}

\mathsf{y+3z=0\to~y=-3z}

\mathsf{N(F)=(-5z,-3z,z)=Z(-5,-3,1)}

Portanto

\mathsf{N(F)=(-5,-3,1)}

\mathsf{Im(F)\{(a, b, c)\in\mathbb{R}^3/F(x, y, z) =(a,b,c)\}}

\mathsf{(x-y+2z,2x+z,y+3z)=(a,b,c)}

\begin{cases}\mathsf{x-y+2z=a}\\\mathsf{2x+z=b}\\\mathsf{y+3z=c}\end{cases}

\mathsf{x+5z=a+c\times(-2)\to~-2x-10z=-2a-2c}

+\underline{\begin{cases}\mathsf{2x+z=b}\\\mathsf{-2x-10z=-2a-2c}\end{cases}}

\mathsf{-9z=b-2a-2c}\\\boxed {\mathsf{z=\dfrac{b-2a-2c}{-9}=-\dfrac{2a+2c-b}{9}}}

\mathsf{2x-\dfrac{2a+3c-b}{9}=b}

\mathsf{18x-2a-3c+b=9b}\\\mathsf{18x=2a+9b-b+3c}\\\mathsf{18x=2a+8b+3c}

\boxed{\mathsf{x=\dfrac{2a+8b+3c}{18}}}

\mathsf{x-y+2z=a}\\\mathsf{\dfrac{2a+8b+3c}{18}-y+2.(-\dfrac{2a+2c-b}{9})=a}

\mathsf{18(2a+8b+3c)-18y-4(2a+2c-b)=a}\\\mathsf{36a+144b+54c-18y-8a-8c+4b=a}

\mathsf{-18y=a-36a+8a-144b-4b-54c+8c}\\\mathsf{-18y=-27a-152b-46c}

\mathsf{y=\dfrac{-27a-152b-46c}{-18}}\\\boxed {\mathsf{y=\dfrac{27a+152b+46c}{18}}}

\mathsf{dimN(F)+dim Im(F)=1+2=3=dim(F)}


kauanoliveiranesve3: obrigado
Perguntas similares