• Matéria: Matemática
  • Autor: vitoriarayana0p67oqh
  • Perguntado 6 anos atrás

Calcule a soma dos dez primeiros termos da PG (3, 6, 12, ...)​

Respostas

respondido por: juanncvq
2

Resposta:

A fórmula da soma de uma PG finita é dada por:

Sn = (a1 * (q^{n} - 1)) / (q-1)

nesse caso a1 = 3, e q = 2

S10 = (3 * (2^{10} - 1)) / (2 - 1)

S10 = 3 * 1023 = 3069

respondido por: solkarped
3

✅ Após resolver os cálculos, concluímos que a soma dos dez primeiros termos da referida progressão geométrica é:

        \LARGE\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf S_{10} = 3069\:\:\:}}\end{gathered}$}

Seja a progressão geométrica:

          \Large\displaystyle\text{$\begin{gathered} P.G.(3, 6, 12, \cdots)\end{gathered}$}

Calculando a razão da P.G. temos:

         \Large\displaystyle\text{$\begin{gathered} q = \frac{A_{n}}{A_{n - 1}} = \frac{6}{3} = 2\end{gathered}$}

Desta forma, temos os seguintes dados:

       \Large\begin{cases}S_{n} = Soma\:n\:termos = \:?\\A_{1} = Primeiro\:termo = 3\\n = Ordem\:termo\:procurado = 10\\q = Raz\tilde{a}o = 6/3 = 2 \end{cases}

Para calcular o produto dos seis primeiros termos da progressão geométrica devemos utilizar a seguinte fórmula

\Large\displaystyle\text{$\begin{gathered} \bf I\end{gathered}$}          \LARGE\displaystyle\text{$\begin{gathered} S_{n} = \frac{A_{1}\cdot(q^{n} - 1)}{q - 1}\end{gathered}$}

Substituindo os valores na equação "I", temos:

         \LARGE\displaystyle\text{$\begin{gathered} S_{10} = \frac{3\cdot(2^{10} - 1)}{2 - 1}\end{gathered}$}

                   \LARGE\displaystyle\text{$\begin{gathered} = \frac{3\cdot(1024 - 1)}{1}\end{gathered}$}

                   \LARGE\displaystyle\text{$\begin{gathered} = 3\cdot1023\end{gathered}$}

                   \LARGE\displaystyle\text{$\begin{gathered} = 3069\end{gathered}$}

✅ Portanto, o resultado é:

           \LARGE\displaystyle\text{$\begin{gathered} S_{10} = 3069\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/9143935
  2. https://brainly.com.br/tarefa/4012194
  3. https://brainly.com.br/tarefa/821410
  4. https://brainly.com.br/tarefa/36868858
  5. https://brainly.com.br/tarefa/3509992
  6. https://brainly.com.br/tarefa/15074647
  7. https://brainly.com.br/tarefa/22439397
  8. https://brainly.com.br/tarefa/10930557
  9. https://brainly.com.br/tarefa/20268424
  10. https://brainly.com.br/tarefa/17635544
  11. https://brainly.com.br/tarefa/1411804
  12. https://brainly.com.br/tarefa/28981082

Anexos:
Perguntas similares