• Matéria: Matemática
  • Autor: iginho16mc
  • Perguntado 6 anos atrás

Considere o triangulo retangulo abaixo: o valor de 1/h é. Na questão 7

Anexos:

Respostas

respondido por: CyberKirito
0

\boxed{\begin{array}{l}\sf7)\,Considere\,o\,tri\hat angulo\,ret\hat angulo\,abaixo.:\\\sf O\,valor\,de\,\dfrac{1}{h}\,\acute e:\\\sf a)\dfrac{3}{4}\\\\\sf b)\dfrac{4}{3}\\\\\sf\bullet c)\dfrac{5}{12}\\\\\sf d)\dfrac{12}{5}\\\underline{\sf Soluc_{\!\!,}\tilde ao}\\\underline{\sf C\acute alculo\,da\,hipotenusa:}\\\rm x^2=3^2+4^2\\\rm x^2=9+16\\\rm x^2=25\\\rm x=\sqrt{25}\\\rm x=5\\\rm x\cdot h=3\cdot 4\\\rm 5h=12\\\\\rm h=\dfrac{12}{5}\\\\\rm \dfrac{1}{h}=\dfrac{1}{\frac{12}{5}}=\dfrac{5}{12}\end{array}}

\large\boxed{\begin{array}{l}\sf 8)\,Calcule\,o\,valor\,de\,h\,no\,tri\hat angulo\,ret\hat angulo:\\\sf\bullet a)20\\\sf b) 30\\\sf c)60\\\sf d)40\\\underline{\sf soluc_{\!\!,}\tilde ao\!:}\\\rm h^2=16\cdot25\\\rm h=\sqrt{16\cdot25}\\\rm h=\sqrt{16}\cdot\sqrt{25}\\\rm h=4\cdot 5\\\rm h=20\end{array}}

\large\boxed{\begin{array}{l}\sf 9)\,Calcule\,o\,valor\,de\,y\,no\,tri\hat angulo\,ret\hat angulo:\\\sf\bullet a)6\\\sf b)4\\\sf c)8\\\sf d)12\\\underline{\sf soluc_{\!\!,}\tilde ao\!:}\\\rm24\cdot y=12\cdot 12\\\rm y=\dfrac{12\cdot12}{24}\\\\\rm y=\dfrac{\diagdown\!\!\!\!\!\!12\cdot\diagdown\!\!\!\!\!\!12^6}{\backslash\!\!\!2\cdot\diagdown\!\!\!\!\!\!12}\\\\\rm y=6\end{array}}

\large\boxed{\begin{array}{l}\sf 10)\, Sabe-se\,que\,a\,altura\,de\,um\,tri\hat angulo\,re\hat angulo\\\sf mede\,48\,cm\,e\,a\,medida\,de\,um\,dos\,catetos\,\acute e\,igual\,a\,60\,cm\\\sf A\,projec_{\!\!,}\tilde ao\,desse\,cateto\,sobre\,a\,hipotenusa\,\acute e:\\\sf a)33\\\sf b)34\\\sf c)35\\\sf\bullet d)36\\\underline{\sf soluc_{\!\!,}\tilde ao\!:}\\\rm m^2+48^2=60^2\\\rm m^2=60^2-48^2\\\rm m^2=3600-2304\\\rm m^2=1296\\\rm m=\sqrt{1296}\\\rm m=36\end{array}}

Perguntas similares