• Matéria: Matemática
  • Autor: Kawarzz
  • Perguntado 6 anos atrás

Dadas as funções de R em R, definidas por f(x)=2x, g(x)=3x+1 e h(x)=x2-1, calcule a)h(f(g(1))) b)f(g(h(1/2))) c)f(h(g(0))).​

Respostas

respondido por: Anônimo
1

Explicação passo-a-passo:

a) • \sf g(1)=3\cdot1+1

\sf g(1)=3+1

\sf g(1)=4

Assim, \sf h(f(g(1)))=h(f(4))

\sf f(4)=2\cdot4

\sf f(4)=8

Então, \sf h(f(g(1)))=h(8)

\sf h(8)=8^2-1

\sf h(8)=64-1

\sf h(8)=63

Logo, \sf h(f(g(1)))=63

b) • \sf h\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^2-1

\sf h\left(\dfrac{1}{2}\right)=\dfrac{1}{4}-1

\sf h\left(\dfrac{1}{2}\right)=\dfrac{1-4}{4}

\sf h\left(\dfrac{1}{2}\right)=\dfrac{-3}{4}

Assim, \sf f\left(g\left(h\left(\dfrac{1}{2}\right)\right)\right)=f\left(g\left(\dfrac{-3}{4}\right)\right)

\sf g\left(\dfrac{-3}{4}\right)=3\cdot\left(\dfrac{-3}{4}\right)+1

\sf g\left(\dfrac{-3}{4}\right)=\dfrac{-9}{4}+1

\sf g\left(\dfrac{-3}{4}\right)=\dfrac{-9+4}{4}

\sf g\left(\dfrac{-3}{4}\right)=\dfrac{-5}{4}

Então, \sf f\left(g\left(h\left(\dfrac{1}{2}\right)\right)\right)=f\left(\dfrac{-5}{4}\right)

\sf f\left(\dfrac{-5}{4}\right)=2\cdot\left(\dfrac{-5}{4}\right)

\sf f\left(\dfrac{-5}{4}\right)=\dfrac{-10}{4}

\sf f\left(\dfrac{-5}{4}\right)=\dfrac{-5}{2}

Logo, \sf f\left(g\left(h\left(\dfrac{1}{2}\right)\right)\right)=\dfrac{-5}{2}

c) • \sf g(0)=3\cdot0+1

\sf g(0)=0+1

\sf g(0)=1

Assim, \sf f(h(g(0)))=f(h(1))

\sf h(1)=1^2-1

\sf h(1)=1-1

\sf h(1)=0

Então, \sf f(h(g(0)))=f(0)

\sf f(0)=2\cdot0

\sf f(0)=0

Logo, \sf f(h(g(0)))=0

Perguntas similares