Respostas
1º LAL (lado, ângulo, lado): dois lados congruentes e ângulos formados também congruentes.
2º LLL (lado, lado, lado): três lados congruentes.
3º ALA (ângulo, lado, ângulo): dois ângulos congruentes e lado entre os ângulos congruente.
4º LAA (lado, ângulo, ângulo): congruência do ângulo adjacente ao lado, e congruência do ângulo oposto ao lado.
Espero ter ajudado <3
Resposta:
Dizer que duas figuras são congruentes é equivalente a dizer que as medidas de seus lados e ângulos correspondentes são iguais. Mas para mostrar a congruência entre duas figuras é necessário mostrar que todos os lados e ângulos correspondentes são congruentes.
A questão é que com os triângulos essa demonstração ocorre de modo especial, pois, por possuírem apenas 3 lados e 3 ângulos, essas figuras gozam de propriedades únicas que reduzem o trabalho de verificação de congruência. Essas propriedades são conhecidas como Casos de congruência de triângulos.
Todos os casos de congruência de triângulos indicam que apenas 3 medidas precisam ser verificadas. Quando dois triângulos se enquadram em algum desses casos, não é necessário verificar o restante de suas medidas. Já se pode concluir que os dois triângulos são congruentes.
Os casos de congruência de triângulos são:
1º LAL (lado, ângulo, lado): dois lados congruentes e ângulos formados também congruentes.
2º LLL (lado, lado, lado): três lados congruentes.
3º ALA (ângulo, lado, ângulo): dois ângulos congruentes e lado entre os ângulos congruente.
4º LAA (lado, ângulo, ângulo): congruência do ângulo adjacente ao lado, e congruência do ângulo oposto ao lado.