• Matéria: Matemática
  • Autor: hanielbnn27
  • Perguntado 6 anos atrás

Resolva as equações do 2° grau abaixo:

a) x² - 5 + 6 = 0

b) x² - 8x + 12 = 0

c) x² + 2x - 8 = 0

d) x² - 5x + 8 = 0

e) 2x² - 8x + 8 = 0

f) x² - 4x - 5 = 0

g) -x² + x + 12 = 0

h) -x² + 6x - 5 = 0

i) 6x² + x - 1 = 0

J) 3x² - 7x + 2 = 0

me ajudem, eu imploro por favor



Respostas

respondido por: Anônimo
1

Explicação passo-a-passo:

a) \sf x^2-5x+6=0

\sf \Delta=(-5)^2-4\cdot1\cdot6

\sf \Delta=25-24

\sf \Delta=1

\sf x=\dfrac{-(-5)\pm\sqrt{1}}{2\cdot1}=\dfrac{5\pm1}{2}

\sf x'=\dfrac{5+1}{2}~\longrightarrow~x'=\dfrac{6}{2}~\longrightarrow~x'=3

\sf x"=\dfrac{5-1}{2}~\longrightarrow~x"=\dfrac{4}{2}~\longrightarrow~x"=2

\sf S=\{2,3\}

b) \sf x^2-8x+12=0

\sf \Delta=(-8)^2-4\cdot1\cdot12

\sf \Delta=64-48

\sf \Delta=16

\sf x=\dfrac{-(-8)\pm\sqrt{16}}{2\cdot1}=\dfrac{8\pm4}{2}

\sf x'=\dfrac{8+4}{2}~\longrightarrow~x'=\dfrac{12}{2}~\longrightarrow~x'=6

\sf x"=\dfrac{8-4}{2}~\longrightarrow~x"=\dfrac{4}{2}~\longrightarrow~x"=2

\sf S=\{2,6\}

c) \sf x^2+2x-8=0

\sf \Delta=2^2-4\cdot1\cdot(-8)

\sf \Delta=4+32

\sf \Delta=36

\sf x=\dfrac{-2\pm\sqrt{36}}{2\cdot1}=\dfrac{-2\pm6}{2}

\sf x'=\dfrac{-2+6}{2}~\longrightarrow~x'=\dfrac{4}{2}~\longrightarrow~x'=2

\sf x"=\dfrac{-2-6}{2}~\longrightarrow~x"=\dfrac{-8}{2}~\longrightarrow~x"=-4

\sf S=\{-4,2\}

d) \sf x^2-5x+8=0

\sf \Delta=(-5)^2-4\cdot1\cdot8

\sf \Delta=25-32

\sf \Delta=-7

Não há raízes reais

\sf S=\{~~\}

e) \sf 2x^2-8x+8=0

\sf x^2-4x+4=0

\sf \Delta=(-4)^2-4\cdot1\cdot4

\sf \Delta=16-16

\sf \Delta=0

\sf x=\dfrac{-(-4)\pm\sqrt{0}}{2\cdot1}=\dfrac{4\pm0}{2}

\sf x'=x"=\dfrac{4}{2}

\sf x'=x"=2

\sf S=\{2\}

f) \sf x^2-4x-5=0

\sf \Delta=(-4)^2-4\cdot1\cdot(-5)

\sf \Delta=16+20

\sf \Delta=36

\sf x=\dfrac{-(-4)\pm\sqrt{36}}{2\cdot1}=\dfrac{4\pm6}{2}

\sf x'=\dfrac{4+6}{2}~\longrightarrow~x'=\dfrac{10}{2}~\longrightarrow~x'=5

\sf x"=\dfrac{4-6}{2}~\longrightarrow~x"=\dfrac{-2}{2}~\longrightarrow~x"=-1

\sf S=\{-1,5\}

g) \sf -x^2+x+12=0

\sf \Delta=1^2-4\cdot(-1)\cdot12

\sf \Delta=1+48

\sf \Delta=49

\sf x=\dfrac{-1\pm\sqrt{49}}{2\cdot(-1)}=\dfrac{-1\pm7}{-2}

\sf x'=\dfrac{-1+7}{-2}~\longrightarrow~x'=\dfrac{6}{-2}~\longrightarrow~x'=-3

\sf x"=\dfrac{-1-7}{-2}~\longrightarrow~x"=\dfrac{-8}{-2}~\longrightarrow~x"=4

\sf S=\{-3,4\}

h) \sf -x^2+6x-5=0

\sf \Delta=6^2-4\cdot(-1)\cdot(-5)

\sf \Delta=36-20

\sf \Delta=16

\sf x=\dfrac{-6\pm\sqrt{16}}{2\cdot(-1)}=\dfrac{-6\pm4}{-2}

\sf x'=\dfrac{-6+4}{-2}~\longrightarrow~x'=\dfrac{-2}{-2}~\longrightarrow~x'=1

\sf x"=\dfrac{-6-4}{-2}~\longrightarrow~x"=\dfrac{-10}{-2}~\longrightarrow~x"=5

\sf S=\{1,5\}

i) \sf 6x^2+x-1=0

\sf \Delta=1^2-4\cdot6\cdot(-1)

\sf \Delta=1+24

\sf \Delta=25

\sf x=\dfrac{-1\pm\sqrt{25}}{2\cdot6}=\dfrac{-1\pm5}{12}

\sf x'=\dfrac{-1+5}{12}~\longrightarrow~x'=\dfrac{4}{12}~\longrightarrow~x'=\dfrac{1}{3}

\sf x"=\dfrac{-1-5}{12}~\longrightarrow~x"=\dfrac{-6}{12}~\longrightarrow~x"=\dfrac{-1}{2}

\sf S=\left\{\dfrac{-1}{2},\dfrac{1}{3}\right\}

j) \sf 3x^2-7x+2=0

\sf \Delta=(-7)^2-4\cdot3\cdot2

\sf \Delta=49-24

\sf \Delta=25

\sf x=\dfrac{-(-7)\pm\sqrt{25}}{2\cdot3}=\dfrac{7\pm5}{6}

\sf x'=\dfrac{7+5}{6}~\longrightarrow~x'=\dfrac{12}{6}~\longrightarrow~x'=2

\sf x"=\dfrac{7-5}{6}~\longrightarrow~x"=\dfrac{2}{6}~\longrightarrow~x"=\dfrac{1}{3}

\sf S=\left\{\dfrac{1}{3},2\right\}


hanielbnn27: muito obrigado
Perguntas similares