• Matéria: Matemática
  • Autor: Manuevicentini
  • Perguntado 6 anos atrás

Determine a Fração geratriz de cada uma das seguintes Dízimas periódicas:

A) 2,7777... D) 1,2343434...
B) 0,454545... E) 0,577...
C) 0,444... F) 3,555...

Por favor me ajudeem :( preciso entregar hoje

Respostas

respondido por: guaraciferreiraap
1

Resposta:

Explicação passo-a-passo:

A)  2,777... = 2 + 7\9 = 2.9+7\9 = 25\9

B)  0,454545... = 45\99 = 5\11

C)  0,444... = 4\9

D)  1,2343434... = 1 + 234-2\990 = 1 + 232\990 =

1.990+232\990 = 1222\990 = 611\495

E)  0,5777... = 57-5\90 = 52\90 = 26\45

F)  3,555... = 3 + 5\9 = 3.9+5\9 = 32\9

respondido por: CyberKirito
2

a)

\mathsf{x=2,777...\cdot10}\\\mathsf{10x=27,777...}

-\underline{\begin{cases}\mathsf{10x=27,777...}\\\mathsf{x=2,777...}\end{cases}}

\mathsf{9x=25}\\\huge\boxed{\boxed{\boxed{\boxed{\mathsf{x=\dfrac{25}{9}}}}}}

\dotfill

b)

\mathsf{x=0,454545...\cdot(100)}\\\mathsf{100x=45,454545...}

-\underline{\begin{cases}\mathsf{100x=45,454545...}\\\mathsf{x=0,454545...}\end{cases}}

\mathsf{99x=45}\\\mathsf{x=\dfrac{45\div9}{99\div9}}\\\huge\boxed{\boxed{\boxed{\boxed{\mathsf{x=\dfrac{5}{11}}}}}}

\dotfill

c)

\mathsf{x=0,444...\cdot10}\\\mathsf{10x=4,444...}

-\underline{\begin{cases}\mathsf{10x=4,444...}\\\mathsf{x=0,444... }\end{cases}}

\mathsf{9x=4}\\\huge\boxed{\boxed{\boxed{\boxed{\mathsf{x=\dfrac{4}{9}}}}}}

\dotfill

d)

\mathsf{x=1,2343434...\cdot10}\\\mathsf{10x=12,343434...\cdot100}\\\mathsf{1000x=1234,343434...}

-\underline{\begin{cases}\mathsf{1000x=1234,343434...}\\\mathsf{10x=12,343434...}\end{cases}}

\mathsf{990x=1222}\\\mathsf{x=\dfrac{1222\div2}{990\div2}}\\\huge\boxed{\boxed{\boxed{\boxed{\mathsf{x=\dfrac{611}{495}}}}}}

\dotfill

e)

\mathsf{x=0,577...\cdot10}\\\mathsf{10x=5,777...\cdot10}\\\mathsf{100x=57,777...}

-\underline{\begin{cases}\mathsf{100x=57,777...}\\\mathsf{10x=5,777... }\end{cases}}

\mathsf{90x=52}\\\mathsf{x=\dfrac{52\div2}{90\div2}}\\\huge\boxed{\boxed{\boxed{\boxed{\mathsf{x=\dfrac{26}{45}}}}}}

\dotfill

f)

\mathsf{x=3,555...\cdot10}\\\mathsf{10x=35,555...}

-\underline{\begin{cases}\mathsf{10x=35,555...}\\\mathsf{x=3,555...}\end{cases}}

\mathsf{9x=32}\\\huge\boxed{\boxed{\boxed{\boxed{\mathsf{x=\dfrac{32}{9}}}}}}

\dotfill

Perguntas similares