Certa máquina térmica ideal funciona realizando o ciclo de Carnot. Em cada ciclo o trabalho útil fornecido pela máquina é de 1.000 J. Sendo as temperaturas das fontes térmicas 127 °C e 27 °C, respectivamente, determine:
a) o rendimento da máquina referida; (25 %)
b) a quantidade de calor retirada da fonte quente; (4.000 J)
c) a quantidade de calor rejeitada para a fonte fria. (3.000 J)
Respostas
Resposta:
a) A eficiência de uma máquina térmica de Carnot depende apenas das temperaturas da fonte fria () e quente (), sendo as temperaturas em Kelvin. Logo, as temperaturas devem ser previamente convertidas:
Logo, a eficiência pode ser calculada por:
b) A partir da eficiência e do calor retirado da fonte quente, o trabalho é dado por . Logo, a quantidade de calor retirado da fonte quente será:
c) A quantidade de calor rejeitada para a fonte fria pode ser calculada por:
Bons estudos!! Espero ter ajudado
O rendimento da máquina referida, a quantidade de calor retirada e rejeitada são respectivamente: 25% ; 4000J ; 3000J - letra a), b) e c).
Vamos aos dados/resoluções:
A premissa de máquina simples se baseia em um mecanismo complicado como: Uma máquina de escrever, uma máquina de costura, Um trem, um carro e isso acontece porque toda máquina, por mais complexa que possa parecer são combinações de peças isoladas e por isso são conhecidas como máquina simples.
Para alternativa a) precisamos primeiro converter as temperaturas da Fonte Fria e Fonte Quente (Tc ~ Th para Kelvin). Logo:
Tc = 27 + 273 = 300K
Th = 127 + 273 = 400K.
Sua eficiência será então:
E = 1 - Tc/Th
E = 1 - 300/400
E = 0,25 = 25%.
Para alternativa b) vemos que o trabalho será projetado através de W = e . Qh (Qh que foi retirado da fonte quente). Portanto, encontraremos:
Qh = W/e = 1000 / 0,25
Qh = 4000J.
Para a alternativa c) que deseja saber a quantidade de calor rejeitada teremos:
Qh = W + Qc
Qc = Qh - W
Qc = 4000 - 1000
Qc = 3000J.
Para saber mais sobre o assunto:
https://brainly.com.br/tarefa/14024672
Espero ter ajudado nos estudos e bebam água :)