A solução do sistema linear é :
a) S = {(1, -1,2)}
b) S = {(-2, 1,4)}
c) S = {(4,2,0)}
d) S = {( 3, 1, - 1)}
e) S = {( -1 ,1,0)}
obs: Resposta com explicações. Obrigada
Respostas
Resposta:
Alternativa: (E)
Ver Resolução abaixo.
Explicação passo-a-passo:
Somando as duas primeiras equações teremos:
- x + y - z = 2
x + y + z = 0
-----------------------
2y = 2
y = 2/2
y = 1
Substituindo o y = 1 na 2° e na 3° equações teremos:
x + y + z = 0. 2x + 3y + 4z = 1
x + 1 + z = 0. 2x + 3.1 + 4z = 1
x + z = - 1. 2x + 3 + 4z = 1
2x + 4z = 1 - 3
2x + 4z = - 2
Temos um sistema com duas equações e 2 incógnitas.
2x + 4z = - 2. 2x + 4z = - 2
x +. z = - 1. .(- 2). - 2x - 2z = 2
---------------------------. -----------------------
2z = 0
z = 0/2
z = 0
Substituindo z = 0 teremos:
x + z = - 1
x + 0 = - 1
x = - 1
Solução: S = {(- 1, 1, 0)}
Explicação passo-a-passo:
Assim:
->
->
->
Logo, o conjunto solução é
Letra E