• Matéria: Matemática
  • Autor: mrqss
  • Perguntado 6 anos atrás

1) resolva os fatoriais:
a) (n+2)! / (n+3)! = 20

b) (n+1)!2 /n! =10

2) simplifique os fatoriais:
a) n! / (n - 2)! =

b) (n+1)! / (n+2)1 =

c) (n+3)!(n-1)! / (n-1)!(n+2)! =

3- Resolva os fatorials abaixo:
a) 5! =
b) 4! X 5! =
c) 3!+ 4! =
d) 3! X 5! - 4! =
e) 2! +3! X 2! =
f) 3! / 2!=
G) 3! + 2! / 2! =
h) 3! × 2! / 2! =



Respostas

respondido por: CyberKirito
3

Fatorial de um número natural

É uma multiplicação de fatores até chegar o número 1.

exemplo

\mathsf{3!=3\cdot2\cdot1=6}

Um fatorial pode ser escrito em escrito em termos de fatoriais menores.

\mathsf{n!=n(n-1)!=n(n-1)(n-2)!...3\cdot2\cdot1}

Definições especiais

\boxed{\boxed{\boxed{\boxed{\mathsf{1!=1}}}}}\\\huge\boxed{\boxed{\boxed{\boxed{\mathsf{0!=1}}}}}

\dotfill

1) resolva os fatoriais:

a)

\mathsf{\dfrac{(n+2)!}{(n+3)!}=20}\\\mathsf{\dfrac{(n+2)!}{(n+3)(n+2)!}=20}\\\mathsf{\dfrac{1}{n+3}=20}\\\mathsf{20n+60=1}\\\mathsf{20n=1-60}\\\mathsf{20n=-59}\\\mathsf{n=-\dfrac{59}{20}}\\\huge\boxed{\boxed{\boxed{\boxed{\mathsf{S=\varnothing}}}}}

b) \mathsf{\dfrac{2(n+1)!}{n!}=10}\\\mathsf{\dfrac{2(n+1)\cdot n!}{n!}=10}\\\mathsf{n+1=\dfrac{10}{2}}\\\mathsf{n+1=5}\\\mathsf{n=5-1}\\\huge\boxed{\boxed{\boxed{\boxed{\mathsf{n=4}}}}}

\dotfill

2) simplifique os fatoriais:

a)

\mathsf{\dfrac{n!}{(n-2)!}=\dfrac{n(n-1)(n-2)!}{(n-2)!}=n(n-1)}

b)

\mathsf{\dfrac{(n+1)!}{(n+2)!}=\dfrac{(n+1)!}{(n+2)(n+1)!}=\dfrac{1}{n+2}}

c)

\mathsf{\dfrac{(n+3)! \cdot(n-1)!}{(n-1)! \cdot(n+2)!}=\dfrac{(n+3)(n+2)!}{(n+2)!}=n+3}

\dotfill

3- Resolva os fatorials abaixo:

a)

\mathsf{5!=120}

b)

\mathsf{4!\cdot5!=24\cdot120=2880}

c)

\mathsf{3!+4!=6+24=30}

d)

\mathsf{3!\cdot5!-4!=6\cdot120-24=720-24=696}

e)

\mathsf{2!+3!\cdot2!=2+6\cdot2=2+12=14}

f)

\mathsf{\dfrac{3!}{2!}=\dfrac{3\cdot2!}{2!}=3}

G)

\mathsf{\dfrac{3!+2!}{2!}=\dfrac{3\cdot2!+2!}{2!}}\\\mathsf{\dfrac{2!(3+1)}{2!}=4}

h)

\mathsf{\dfrac{3!\cdot2!}{2!}=3!=6}

\dotfill

Saiba mais em:

https://brainly.com.br/tarefa/4191390

Perguntas similares