Respostas
Explicação passo-a-passo:
Sendo $$\begin{lgathered}A = \left[\begin{array}{ccc}1&3\\2&0\\-1&4\end{array}\right]\end{lgathered}$$ e $$\begin{lgathered}B = \left[\begin{array}{ccc}2&1\\3&1\end{array}\right]\end{lgathered}$$ , vamos determinar as matrizes transpostas de A e B.
Para isso, o que era linha vira coluna e o que era coluna vira linha.
Sendo assim:
$$\begin{lgathered}A^T = \left[\begin{array}{ccc}1&2&-1\\3&0&4\end{array}\right]\end{lgathered}$$
$$\begin{lgathered}B^T = \left[\begin{array}{ccc}2&3\\1&1\end{array}\right]\end{lgathered}$$
Logo:
a) A.B
$$\begin{lgathered}A.B =\left[\begin{array}{ccc}1&3\\2&0\\-1&4\end{array}\right].\left[\begin{array}{ccc}2&1\\3&1\end{array}\right]\end{lgathered}$$
$$\begin{lgathered}A.B= \left[\begin{array}{ccc}11&4\\4&2\\10&3\end{array}\right]\end{lgathered}$$
b) B.A
Perceba que a matriz B é (2x2) e a matriz A é (3x2).
Como o número de colunas de B é diferente do número de linhas de A, então não é possível realizar a multiplicação.
c) A.C
Sendo $$\begin{lgathered}C = \left[\begin{array}{cc}4\\-1\end{array}\right]\end{lgathered}$$ , temos que:
$$\begin{lgathered}A.C = \left[\begin{array}{ccc}1&3\\2&0\\-1&4\end{array}\right].\left[\begin{array}{cc}4\\-1\end{array}\right]\end{lgathered}$$
$$\begin{lgathered}A.C= \left[\begin{array}{ccc}1\\8\\-8\end{array}\right]\end{lgathered}$$
d) $$B^T.C$$
$$\begin{lgathered}B^T.C = \left[\begin{array}{ccc}2&3\\1&1\end{array}\right]. \left[\begin{array}{cc}4\\-1\end{array}\right]\end{lgathered}$$
$$\begin{lgathered}B^T.C= \left[\begin{array}{cc}5\\3\end{array}\right]\end{lgathered}$$
e) $$B.A^T$$
$$\begin{lgathered}B.A^T= \left[\begin{array}{ccc}2&1\\3&1\end{array}\right].\left[\begin{array}{ccc}1&2&-1\\3&0&4\end{array}\right]\end{lgathered}$$
$$\begin{lgathered}B.A^T= \left[\begin{array}{ccc}5&4&2\\6&6&1\end{array}\right]\end