• Matéria: Matemática
  • Autor: RowaBrasil
  • Perguntado 6 anos atrás

Dados os números complexos Resolva

Anexos:

Respostas

respondido por: Anônimo
1

Explicação passo-a-passo:

a)

\sf z+v=3+2i+4-3i

\sf z+v=3+4+2i-3i

\sf z+v=7-i

b)

\sf v+w=4-3i-2+2i

\sf v+w=4-2-3i+2i

\sf v+w=2-i

c)

\sf z-v=3+2i-(4-3i)

\sf z-v=3+2i-4+3i

\sf z-v=3-4+2i+3i

\sf z-v=-1+5i

d)

\sf v-w=4-3i-(-2+2i)

\sf v-w=4-3i+2-2i

\sf v-w=4+2-3i-2i

\sf v-w=6-5i

e)

\sf z+v+w=3+2i+4-3i-2+2i

\sf z+v+w=3+4-2+2i-3i+2i

\sf z+v+w=5+i

f)

\sf z\cdot v=(3+2i)\cdot(4-3i)

\sf z\cdot v=12-9i+8i-6i^2

\sf z\cdot v=12-i-6\cdot(-1)

\sf z\cdot v=12-i+6

\sf z\cdot v=18-i

g)

\sf z\cdot w=(3+2i)\cdot(-2+2i)

\sf z\cdot w=-6+6i-4i+4i^2

\sf z\cdot w=-6+2i+4\cdot(-1)

\sf z\cdot w=-6+2i-4

\sf z\cdot w=-10+2i

h)

\sf z^2=(3+2i)^2

\sf z^2=3^2+2\cdot3\cdot2i+(2i)^2

\sf z^2=9+12i+4i^2

\sf z^2=9+12i+4\cdot(-1)

\sf z^2=9+12i-4

\sf z^2=5+12i

i)

\sf \dfrac{z}{v}=\dfrac{3+2i}{4-3i}

\sf \dfrac{z}{v}=\dfrac{3+2i}{4-3i}\cdot\dfrac{4+3i}{4+3i}

\sf \dfrac{z}{v}=\dfrac{12+8i+9i+6i^2}{4^2-(3i)^2}

\sf \dfrac{z}{v}=\dfrac{12+17i+6\cdot(-1)}{16-9i^2}

\sf \dfrac{z}{v}=\dfrac{12+17i-6}{16-9\cdot(-1)}

\sf \dfrac{z}{v}=\dfrac{6+17i}{16+9}

\sf \dfrac{z}{v}=\dfrac{6+17i}{25}

\sf \dfrac{z}{v}=\dfrac{6}{25}+\dfrac{17i}{25}

j)

\sf \dfrac{z}{w}=\dfrac{3+2i}{-2+2i}

\sf \dfrac{z}{v}=\dfrac{3+2i}{-2+2i}\cdot\dfrac{-2-2i}{-2-2i}

\sf \dfrac{z}{w}=\dfrac{-6-4i-6i-4i^2}{(-2)^2-(2i)^2}

\sf \dfrac{z}{w}=\dfrac{-6-10i-4\cdot(-1)}{4-4i^2}

\sf \dfrac{z}{w}=\dfrac{-6-10i+4}{4-4\cdot(-1)}

\sf \dfrac{z}{w}=\dfrac{-2-10i}{4+4}

\sf \dfrac{z}{w}=\dfrac{-2-10i}{8}

\sf \dfrac{z}{w}=\dfrac{-2}{8}-\dfrac{10i}{8}

\sf \dfrac{z}{w}=-\dfrac{1}{4}-\dfrac{5i}{4}

Perguntas similares