• Matéria: Matemática
  • Autor: lechetaamanda
  • Perguntado 6 anos atrás

DESAFIO: Seja o termo geral da sequência igual a Tn= 2.n + 12 . (n-1) e sabendo que n é um número natural e maior que um. Calcule o quarto termo e o oitavo termo da sequência. O primeiro termo é igual a 1. Poe favor gente me ajudem nao estou entendendo

Respostas

respondido por: MALAQUIAS2kk
6

Resposta:

Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais ou complexos. Assim, por exemplo, o conjunto ordenado A = ( 3, 5, 7, 9, 11, ... , 35) é uma sequência cujo primeiro termo é 3, o segundo termo é 5, o terceiro termo é 7 e assim sucessivamente.

Uma sequência pode ser finita ou infinita.

O exemplo dado acima é de uma sequência finita.

Já a sequência P = (0, 2, 4, 6, 8, ... ) é infinita.

Uma sequência numérica pode ser representada genericamente na forma:

(a1, a2, a3, ... , ak, ... , an, ...) onde a1 é o primeiro termo, a2 é o segundo termo, ... , ak é o k-ésimo termo, ... , an é o n-ésimo termo. (Neste caso, k < n).

Por exemplo, na sequência Y = ( 2, 6, 18, 54, 162, 486, ... ) podemos dizer que a3 = 18,  a5 = 162, etc.

São de particular interesse, as sequências cujos termos obedecem a uma lei de formação, ou seja é possível escrever uma relação matemática entre eles.

Assim, na sequência Y acima, podemos observar que cada termo a partir do segundo é igual ao anterior multiplicado por 3.

A lei de formação ou seja a expressão matemática que relaciona entre si os termos da sequência, é denominada termo geral.

Considere por exemplo a sequência S cujo termo geral seja dado por an = 3n + 5, onde n é um número natural não nulo.  

Observe que atribuindo-se valores para n, obteremos o termo an (n - ésimo termo) correspondente.  

Assim por exemplo, para n = 20, teremos

an = 3.20 + 5 = 65, e portanto o vigésimo termo dessa sequência (a20) é igual a 65.

Prosseguindo com esse raciocínio, podemos escrever toda a sequência S que seria:

S = ( 8, 11, 14, 17, 20, ... ).

Dado o termo geral de uma sequência, é sempre fácil determiná-la.

Seja por exemplo a sequência de termo geral an = n2 + 4n + 10, para n inteiro e positivo.  

Nestas condições, podemos concluir que a sequência poderá ser escrita como:

(15, 22, 31, 42, 55, 70, ... ).

Por exemplo:

a6 = 70 porque a6 = 62 + 4.6 + 10 = 36 + 24 + 10 = 70.

Explicação passo-a-passo:


lechetaamanda: obrigadaa
lechetaamanda: mas qual e a resposta
MALAQUIAS2kk: nd
MALAQUIAS2kk: -7
lechetaamanda: vlw
Perguntas similares