• Matéria: Matemática
  • Autor: 3liana
  • Perguntado 6 anos atrás

Log4(x-3)+log16(x-3)=3

Respostas

respondido por: Armandobrainly
0

Resposta:

x = 19

Explicação passo-a-passo:

 log_{4}( x - 3)  +  log_{16}(x - 3)  = 3

 log_{4}(x -  3)  +  log_{16}(x - 3)  = 3,x > 3

 log_{4}(x -  3)  +  log_{ {4}^{2} }(x - 3)  = 3

 log_{4}(x - 3)  +  \frac{1}{2}  \times  log_{4}(x - 3)  = 3

 log_{4}(x - 3)  +  log_{4}((x - 3)  ^{ \frac{1}{2} } ) = 3

 log_{4}((x - 3) \times  {(x - 3)}^{ \frac{1}{2} } )  = 3

 log_{4}( {(x - 3)}^{ \frac{3}{2} } )  = 3

 {(x - 3)}^{ \frac{3}{2} }  =  {4}^{3}

 {(x - 3)}^{ \frac{3}{2} }  = 64

 { {((x - 3)}^{ \frac{3}{2} }) }^{ \frac{2}{3} }  =  {64}^{ \frac{2}{3} }

x -  3 =  {64}^{ \frac{2}{3} }

x - 3 =  { {(2}^{6} )}^{ \frac{2}{3} }

x - 3 =  {2}^{4}

x - 3 = 16

x = 16 + 3

x = 19,x > 3

x = 19

Perguntas similares