3 — Observe a figura e responda. a) Quais dessas retas são retas concorrentes entre si, quais são paralelas entre si, quais são per- pendiculares entre si e quais são oblíquas entre si? b) O ângulo IHJ, chamado de ângulo reto, possui qual medida? c) O ângulo BAH é suplementar ao ângulo BAC. Quanto mede o ângulo BAH? d) Os ângulos BAH e CAD são opostos pelo vértice. Qual é a medida do ângulo CAD? e) Qual é a medida do ângulo DAH? f) Ângulos correspondentes determinados por uma transversal à duas paralelas são congruentes. Qual é a medida do ângulo ADE? g) Qual é a medida do ângulo FDG? h) Qual é a medida do ângulo FDE? i) Ângulos colaterais determinados por uma trans- versal à duas paralelas, se encontram do mesmo lado da transversal e são suplementares. Os ângu- los CAD e ADE são colaterais internos. Quanto é a soma de suas medidas? j) Os ângulos BAH e GDF são colaterais externos. Quanto é a soma de suas medidas? k) Os segmentos DF e DA não são congruentes, mas são consecutivos e colineares. Por quê?
Respostas
Resposta:
As retas concorrentes são u e v, u e r, u e s, u e t, r e t, s e t; As retas paralelas são r e s; As retas perpendiculares são u e v; As retas oblíquas são u e r, u e s, u e t, r e t, s e t; O ângulo IHJ mede 90º; O ângulo BAH mede 110º; O ângulo CAD mede 110º.
a) Duas retas são concorrentes quando há apenas um ponto comum. Logo, essas retas são u e v, u e r, u e s, u e t, r e t, s e t.
As retas paralelas não possuem pontos em comum. As duas paralelas são r e s.
Duas retas são perpendiculares se elas formam um ângulo de 90º entre si. São elas: u e v.
As retas oblíquas formam um ângulo diferente de 90º: u e r, u e s, u e t, r e t, s e t.
b) O ângulo reto possui medida igual a 90º. Então, IHJ = 90º.
c) Se BAH é suplementar ao ângulo BAC, então BAH + BAC = 180º.
Como BAC = 70º, então a medida do ângulo BAH é igual a 110º.
d) Ângulos opostos pelo vértice possuem a mesma medida. Como BAH e CAD são opostos pelo vértice, então a medida do ângulo CAD é 110º.
Explicação passo-a-passo: