Respostas
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da sequência (2, 4, 6, 8,,...), tem-se que:
a)cada elemento nela presente, exceto o primeiro, será o resultado do imediatamente anterior adicionado a um mesmo valor, a saber, 2 unidades (por exemplo, 4=2+2 e 6=4+2). Se um comportamento deste tipo acontece (soma de um mesmo valor para formar os termos seguintes), tem-se uma sequência numérica especial, denominada progressão aritmética (P.A.).
b)progressão aritmética é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;
c)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição: 2 (é o primeiro elemento da sequência e consiste no único número não formado pela soma de um anterior com a razão);
d)centésimo segundo termo (a₁₀₂): ?
e)número de termos (n): 102
- Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 102ª), equivalente ao número de termos.
f)Embora não se saiba o valor do centésimo segundo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem, afastam-se do zero, à direita deste, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero, haja vista que o quarto termo é positivo e a ele e aos próximos será sempre somado um valor positivo.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 4 - 2 ⇒
r = 2 (Razão positiva, conforme prenunciado no item f acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o 102º termo:
an = a₁ + (n - 1) . r ⇒
a₁₀₂ = a₁ + (n - 1) . (r) ⇒
a₁₀₂ = 2 + (102 - 1) . (2) ⇒
a₁₀₂ = 2 + (101) . (2) ⇒ (Veja a Observação 2.)
a₁₀₂ = 2 + 202 ⇒
a₁₀₂ = 204
Observação 2: Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais diferentes, +x+ ou -x-, resultam sempre em sinal de positivo (+).
RESPOSTA: O 102º termo da sequência (2, 4, 6, 8, ...) é 204.
====================================================
VERIFICAÇÃO DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₁₀₂ = 204 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o 102º termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₁₀₂ = a₁ + (n - 1) . (r) ⇒
204 = a₁ + (102 - 1) . (2) ⇒
204 = a₁ + (101) . (2) ⇒
204 = a₁ + 202 ⇒
204 - 202 = a₁ ⇒
2 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 2 (Provado que a₁₀₂ = 204.)
→Veja outras tarefas relacionadas à determinação de termos em sequências do tipo progressão aritmética e resolvidas por mim:
https://brainly.com.br/tarefa/12963811
brainly.com.br/tarefa/27973357
brainly.com.br/tarefa/29994834
brainly.com.br/tarefa/29841264
brainly.com.br/tarefa/1685055
a₁₀₂ = a₁ + (n - 1) . (r) ⇒
a₁₀₂ = 2 + (102 - 1) . (2) ⇒
a₁₀₂ = 2 + (101) . (2) ⇒ (Veja a Observação 2.)
a₁₀₂ = 2 + 202 ⇒
a₁₀₂ = 204