• Matéria: Química
  • Autor: telvinineekarling
  • Perguntado 6 anos atrás

1. Analise o padrão das sequências e complete com os três próximos termos.
a) 12, 16, 20, 24,
e) 32,16,8,
b) -2, 4-6,-8,
f) -10, +10,20, +20, -30,
1 1 1 1 1
c) 0,120, 240, 360,
g)
23456
d) 25, 24, 23, 22,
h) -5, --4, -3, -2,
2. Relacione cada sequência com a expressão de seu termo geral, em que n, número natural com n 2 1, representa a variável.
(a) 3,5,7,9,11,...
( ) 5.10"
(b) 12, 13, 14, 15, 16, ...
( ) 2n +1
(c) 20, 10, 0, --10, -20, ...
(d) 5,50, 500, 5000, 50 000,...
2n
1 1 1 1
( ) 30 - 10n
2 4 6 8 10
( ) 11+n
1
3. Em uma loja, o preço das caixas de parafusos varia conforme a quantidade que cada uma contém. Complete a tabela se-
guindo a sequência numérica.
Quantidade na caixa 100 parafusos 200 parafusos 300 parafusos 400 parafusos
500 parafusos
600 parafusos
Preço por caixa
R$ 70,00
R$ 140,00
R$ 210,00
R$ 280,00​

Respostas

respondido por: rick160163
4

Resposta:Segue as respostas abaixo na explicação

Explicação:1)a)r=16-12-->r=4 é uma PA de ordem crescente

                      b)r=4-(-2)-->r=4+2-->r=6

                         r=-6-4-->r=-10

                         r=-8-(-6)-->r=-8+6-->r=-2 não é uma PA

                       c)r=120-0-->r=120 é uma PA de ordem crescente

                      d)r=24-25-->r=-1 é uma PA de ordem decrescente

                      e)q=16/32:16/16-->q=1/2 é uma PG decrescente

                      f)r=10-(-10)-->r=10+10-->r=20

                        r=20-10-->r=10

                        r=-30-20-->r=-50 não é uma PA

                      g)r=3-2-->r=1 é uma PA de ordem crescente

                      h)r=-4-(-5)-->r=-4+5-->r=1 é uma PA de ordem crescente

                      i)r=1-1-->r=0 é uma PA constante

                        q=1/1-->q=1 é uma PG constante

                   2)a)an=a1+(n-1).r        b)an=a1+(n-1).r

                          a21=3+(21-1).2         a21=12+(20-1).1

                          a21=3+20.2             a21=12+20.1

                          a21=3+40                a21=12+20

                          a21=43                    a21=42

                      c)an=a1+(n-1).r               d)an=a1.q^n-1

                         a21=20+(21-1).(-10)        a21=5.10^21-1

                         a21=20+20.(-10)             a21=5.10^20

                         a21=20-200                    a21=5.100000000000000000000

                        a21=-180                          a21=500000000000000000000

                     e)2n+1      f)30-10n       g)11+n     h)5.10^n

                        2.21+1       30-10.21        11+21      5.10^21

                        42+1          30-210           32

                        43              -180

                   Os itens A e E são 43,os itens C e F são -180

                   Os itens B e G são diferentes nos resultados entre 42 e 32

                   Os itens D e H são diferentes nos resultados entre 5.10^20 e 5.10^21

3)                                           Caixas     Preço por caixa

1°Caixa de Parafusos              100           R$70,00

2°Caixa de Parafusos             200           R$140,00

3°Caixa de Parafusos             300           R$210,00

4°Caixa de Parafusos             400           R$280,00

5°Caixa de Parafusos             500           R$350,00

6°Caixa de Parafusos             600           R$420,00

PA de Caixas de Parafusos      PA de Preços por caixas

an=a1+(n-1).r                                an=a1+(n-1).r

an=100+(n-1).100                         an=70+(n-1).70

A fórmula do termo Geral da PA posso calcular qualquer termos tanto as Caixas de Parafusos e tanto Preços por caixas o que não precisa fazer as contas na sequências sucessivamente

                   

respondido por: laviniagoulart06
4

Resposta:

1-

A)28,32,36

B)-10,-12,-14

C)480,600,720

D)21,20,19

E)4,2,1

F)+30,-40,+40

G)1 , 1, 1.

7. 8. 9.

H)-1,-0,+1

2-

Resposta fica assim

(D)

(A)

(E)

(C)

(B)

3-

500 parafusos=R$350

600parafusos=R$420

Perguntas similares