• Matéria: Matemática
  • Autor: 38869
  • Perguntado 6 anos atrás

utilizando a formula de harão calcule a area de um triangulo cujos lados medem:

Anexos:

Respostas

respondido por: Anônimo
2

Explicação passo-a-passo:

a)

\sf p=\dfrac{5+7+4}{2}

\sf p=\dfrac{16}{2}

\sf p=8

\sf S=\sqrt{p\cdot(p-a)\cdot(p-b)\cdot(p-c)}

\sf S=\sqrt{(8\cdot(8-5)\cdot(8-7)\cdot(8-4)}

\sf S=\sqrt{8\cdot3\cdot1\cdot4}

\sf S=\sqrt{96}

\sf S=4\sqrt{6}~m^2

b)

\sf p=\dfrac{12+15+9}{2}

\sf p=\dfrac{36}{2}

\sf p=18

\sf S=\sqrt{p\cdot(p-a)\cdot(p-b)\cdot(p-c)}

\sf S=\sqrt{(18\cdot(18-12)\cdot(18-15)\cdot(18-9)}

\sf S=\sqrt{18\cdot6\cdot3\cdot9}

\sf S=\sqrt{2916}

\sf S=54~dm^2

c)

\sf p=\dfrac{2+3+4}{2}

\sf p=\dfrac{9}{2}

\sf p=4,5

\sf S=\sqrt{p\cdot(p-a)\cdot(p-b)\cdot(p-c)}

\sf S=\sqrt{(4,5\cdot(4,5-2)\cdot(4,5-3)\cdot(4,5-4)}

\sf S=\sqrt{4,5\cdot2,5\cdot1,5\cdot0,5}

\sf S=\sqrt{8,4375}

\sf S=\sqrt{\dfrac{84375}{10000}}

\sf S=\dfrac{75\sqrt{15}}{100}

\sf S=\dfrac{3\sqrt{15}}{4}~km^2

d)

\sf p=\dfrac{14+16+10}{2}

\sf p=\dfrac{40}{2}

\sf p=20

\sf S=\sqrt{p\cdot(p-a)\cdot(p-b)\cdot(p-c)}

\sf S=\sqrt{(20\cdot(20-14)\cdot(20-16)\cdot(20-10)}

\sf S=\sqrt{20\cdot6\cdot4\cdot10}

\sf S=\sqrt{4800}

\sf S=40\sqrt{3}~cm^2

Perguntas similares