QUESTÃO 1 A avaliação de posições relativas (entre pontos e retas, retas e planos e afins) é uma possibilidade de estudar distâncias de forma mais abrangente, podendo ser aplicadas de inúmeras formas na engenharia como na medida de distâncias entre estruturas. Também muito útil nesses casos é verificar as condições (paralelos, perpendiculares) entre si. Deseja-se acoplar duas chapas metálicas e para isso deve-se avaliar se estas estão completamente paralelas entre si. Sabendo as equações dos planos nos quais as placas estão contidas são: Plano 1: 2x – 5y + 2z = 0 Plano 2: –4x + 10y – 4z – 10 = 0 Responda: a) Os planos são paralelos? b) Qual a distância em metros entre os planos? (Se eles se interceptarem, a distância será zero)
brenosantos83:
CONSEGUIU FAZER ESSA QUESTÃO?
Respostas
respondido por:
10
Resposta:
a) Os planos são paralelos
b) Distância= 0 metros
Explicação passo-a-passo:
a) n2 = λ. n1
(-4, 10, -4) = (-2).(2, -5, 2)
b) d(p°π) = |2 + (-5) + 2 + 1|
√(-4)² + 10² + (-4)²
d(p°π) = |0| ⇒ 0 metros
√132
respondido por:
6
Resposta:
Explicação passo-a-passo:
Anexos:
(-4)^2 + (10)^2 + (-4)^2
16 + 100 + 16 = 132
O sinal dos coeficientes são próprios deles, logo a^2 = (-4)^2 = -4 x -4 = 16
+ com - dá -
+ com + dá +
Perguntas similares
5 anos atrás
5 anos atrás
7 anos atrás
7 anos atrás
8 anos atrás
8 anos atrás