• Matéria: Matemática
  • Autor: nagilangela
  • Perguntado 6 anos atrás

Resolva a equação: x³ - x = 2 , utilizando a fórmula de Cardano

Respostas

respondido por: SubGui
7

Resposta:

\boxed{\bold{x_1=\sqrt[3]{\dfrac{9+\sqrt{78}}{9}}+ \sqrt[3]{\dfrac{9-\sqrt{78}}{9}}}}

\boxed{\bold{x_2=-\dfrac{-1+i\sqrt{3}}{2}\cdot\sqrt[3]{\dfrac{9+\sqrt{78}}{9}}+ \dfrac{-1-i\sqrt{3}}{2}\cdot\sqrt[3]{\dfrac{9-\sqrt{78}}{9}}}}\\\\\\ \boxed{\bold{x_3=\dfrac{-1-i\sqrt{3}}{2}\cdot \sqrt[3]{\dfrac{9+\sqrt{78}}{9}}+ \dfrac{-1+i\sqrt{3}}{2}\cdot\sqrt[3]{\dfrac{9-\sqrt{78}}{9}}}}}

Explicação passo-a-passo:

Olá, boa noite.

Devemos resolver a equação algébrica de grau 3 x^3-x=2 utilizando a fórmula de Cardano.

Primeiro, subtraia 2 em ambos os lados da equação

x^3-x-2=0

Seja uma equação de grau 3 com coeficientes reais ax^3+bx^2+cx+d=0, com a\neq0. A fórmula de Cardano prevê a existência de três raízes, dadas por:

x_1=-\dfrac{b}{3a}+\sqrt[3]{-\dfrac{q}{2}+\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}+ \sqrt[3]{-\dfrac{q}{2}-\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}\\\\\\  x_2=-\dfrac{b}{3a}+\dfrac{-1+i\sqrt{3}}{2}\cdot \sqrt[3]{-\dfrac{q}{2}+\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}+ \dfrac{-1-i\sqrt{3}}{2}\cdot\sqrt[3]{-\dfrac{q}{2}-\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}

x_3=-\dfrac{b}{3a}+\dfrac{-1-i\sqrt{3}}{2}\cdot \sqrt[3]{-\dfrac{q}{2}+\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}+ \dfrac{-1+i\sqrt{3}}{2}\cdot\sqrt[3]{-\dfrac{q}{2}-\sqrt{\dfrac{q^2}{4}+\dfrac{p^3}{27}}}

Tal que q=\dfrac{d}{a}-\dfrac{b\cdot c}{3\cdot a^2}+\dfrac{2b^3}{27a^3} e p=\dfrac{c}{a}-\dfrac{b^2}{3a^2}.

Observe que nossa equação está incompleta, apresentando somente os coeficientes a=1,~c=-1 e d=-2. Essencialmente, consideramos b=0.

Substituindo os valores dos coeficientes para calcular q e p, temos:

q=\dfrac{-2}{1}-\dfrac{0\cdot (-1)}{2}+\dfrac{2\cdot 0^3}{27\cdot 1^3} e p=\dfrac{-1}{1}-\dfrac{0^2}{3\cdot 1^2}

Multiplique e some os valores

q=-2 e p=-1

Substituindo os valores na fórmula de Cardano, temos as soluções

x_1=\sqrt[3]{-\dfrac{-2}{2}+\sqrt{\dfrac{(-2)^2}{4}+\dfrac{(-1)^3}{27}}}+ \sqrt[3]{-\dfrac{(-2)}{2}-\sqrt{\dfrac{(-2)^2}{4}+\dfrac{(-1)^3}{27}}}\\\\\\ x_2=\dfrac{-1+i\sqrt{3}}{2}\cdot \sqrt[3]{-\dfrac{(-2)}{2}+\sqrt{\dfrac{(-2)^2}{4}+\dfrac{(-1)^3}{27}}}+ \dfrac{-1-i\sqrt{3}}{2}\cdot\sqrt[3]{-\dfrac{(-2)}{2}-\sqrt{\dfrac{(-2)^2}{4}+\dfrac{(-1)^3}{27}}}x_3=\dfrac{-1-i\sqrt{3}}{2}\cdot \sqrt[3]{-\dfrac{(-2)}{2}+\sqrt{\dfrac{(-2)^2}{4}+\dfrac{(-1)^3}{27}}}+ \dfrac{-1+i\sqrt{3}}{2}\cdot\sqrt[3]{-\dfrac{(-2)}{2}-\sqrt{\dfrac{(-2)^2}{4}+\dfrac{(-1)^3}{27}}}

Calculando as potências e multiplicando os valores, temos

x_1=\sqrt[3]{1+\sqrt{1+\dfrac{-1}{27}}}+ \sqrt[3]{-1-\sqrt{1+\dfrac{-1}{27}}}\\\\\\  x_2=\dfrac{-1+i\sqrt{3}}{2}\cdot \sqrt[3]{1+\sqrt{1+\dfrac{-1}{27}}}+ \dfrac{-1-i\sqrt{3}}{2}\cdot \sqrt[3]{-1-\sqrt{1+\dfrac{-1}{27}}}

x_3=\dfrac{-1-i\sqrt{3}}{2}\cdot \sqrt[3]{1+\sqrt{1+\dfrac{-1}{27}}}+ \dfrac{-1+i\sqrt{3}}{2}\cdot\sqrt[3]{1-\sqrt{1+\dfrac{-1}{27}}}

Somando os valores, temos

x_1=\sqrt[3]{1+\sqrt{\dfrac{26}{27}}}+ \sqrt[3]{-1-\sqrt{\dfrac{26}{27}}}\\\\\\  x_2=-\dfrac{-1+i\sqrt{3}}{2}\cdot\sqrt[3]{1+\sqrt{\dfrac{26}{27}}}+ \dfrac{-1-i\sqrt{3}}{2}\cdot \sqrt[3]{1-\sqrt{\dfrac{26}{27}}}\\\\\\ x_3=\dfrac{-1-i\sqrt{3}}{2}\cdot \sqrt[3]{1+\sqrt{\dfrac{26}{27}}}+ \dfrac{-1+i\sqrt{3}}{2}\cdot\sqrt[3]{1-\sqrt{\dfrac{26}{27}}}

Podemos simplificar as raízes quadradas, sabendo que \sqrt{\dfrac{m}{n}}=\dfrac{\sqrt{m}}{\sqrt{n}} e 27=3^3

x_1=\sqrt[3]{\dfrac{9+\sqrt{78}}{9}}+ \sqrt[3]{\dfrac{9-\sqrt{78}}{9}}\\\\\\  x_2=-\dfrac{-1+i\sqrt{3}}{2}\cdot\sqrt[3]{\dfrac{9+\sqrt{78}}{9}}+ \dfrac{-1-i\sqrt{3}}{2}\cdot\sqrt[3]{\dfrac{9-\sqrt{78}}{9}}\\\\\\ x_3=\dfrac{-1-i\sqrt{3}}{2}\cdot \sqrt[3]{\dfrac{9+\sqrt{78}}{9}}+ \dfrac{-1+i\sqrt{3}}{2}\cdot\sqrt[3]{\dfrac{9-\sqrt{78}}{9}}

Utilizando o auxílio de uma calculadora científica, observamos que

x_1\approx 1.52137971\\\\\\ x_2\approx-0.76069 - 0.85787 i\\\\\\ x_3\approx-0.76069 + 0.85787 i

Estas são as soluções para esta equação.

Perguntas similares